Profil Protein Klebsiella pneumoniae K3 Pasca Inaktivasi Sinar Gamma dan Pemanasan Suhu 65 °C

(Protein Profile of Klebsiella pneumonia K3 After Inactivation by Gamma Rays and Heat at 65 °C)

I. SUGORO¹, I. DJAJANEGARA²*
¹Pusat Aplikasi Teknologi Isotop dan Radiasi – BATAN Jakarta
²Pusat Teknologi Bioindustri – BPPT Serpong

Diterima 14 Desember 2010, Disetujui 2 Maret 2011

Kata kunci: Klebsiella pneumoniae, protein, sinar gamma, pemanasan.

Abstract: Klebsiella pneumoniae is one of coliform bacteria which causes human and mammalian diseases. The bacteria dominate in dairy cow milk which has been infected by mastitis and has resistant on antibiotic. Vaccination is one of aims to prevent the diseases. Nuclear technique could be used to have a vaccine candidate. This research was conducted to get inactivated K. pneumoniae by gamma irradiation and heat inactivated as vaccine candidate. The experiments were done by determination of inactivated doses, protein content, and protein profile analysis. K. pneumoniae could be inactivated using gamma rays by doses higher than 600 Gy. Neither irradiation nor heat (65 °C) influenced the K. pneumoniae total protein content The intensity of protein profile in gamma ray inactivated was higher than heat inactivated. There were 35, 36, and 60 kDa protein which were diagnosed as antigen protein. It could be concluded that inactivated by gamma irradiation K. pneumoniae could be chosen as a vaccine candidate and as a model for other bacterial vaccine.

Keywords: Klebsiella pneumoniae, inactivated vaccine, gamma rays, heat, protein.

PENDAHULUAN

INFEKSI merupakan masalah yang besar dalam kesehatan dan telah menghabiskan dana yang sangat besar untuk pencegahan atau pun penanganan. Hilangnya harapan hidup atau produktivitas akibat penyakit infeksi bukan sekedar masalah kesehatan semata, tetapi juga menyangkut permasalahan sosial dan ekonomi. Infeksi ini dapat menyerang manusia maupun hewan sebagai inang atau vektor.
Infeksi atau penyakit akibat infeksi pada manusia telah menyebabkan kematian sebesar 13 juta orang di seluruh dunia setiap tahun, terutama di negara-negara berkembang seperti Indonesia(1). Empat puluh tiga persen kematian di negara berkembang disebabkan oleh penyakit infeksi sedangkan di negara maju hanya sebesar satu persen. Kematian yang besar ini dapat dicegah jika dalam diagnosis yang tepat dan tepat serta dilakukan oleh penanganan yang efektif dan efisien(2). Pada hewan penyakit infeksi telah menurunkan tingkat produksi dan kualitas hasil ternak. Selain itu, karena terinfeksi suatu penyakit menyebabkan hewan dikarantina atau dibunuh.

Salah satu alternatif yang dapat digunakan dalam penanganan penyakit infeksi ini adalah dengan menggunakan teknik mikir untuk pembuatan vaksin. Berbagai penyakit yang borsumber dari virus, bakteri, protozoa dan ecing telah banyak yang memanfaatkan teknik mikir dalam proses pembuatan vaksin(3). Vaksin dapat merangsang sistem imun pada inang untuk melawan infeksi organisme patogen.

diagnosis dapat mengubah agen penyakit patogen menjadi non-patogen yang dapat dihindari dalam sistem kekebalan dalam tubuh(4). Vaksin dapat menambahkan agan penyakit tanpa menghilangkan daya immungeninya dan mampu meningkatkan daya kekebalan pada hewan yang dicakupkan(5). Respons imunitas yang ditimbulkan vaksin iradiasi pun lebih tinggi dibandingkan dengan cara pemanasan dan kimia. Selain itu, vaksin hasil iradiasi tidak membahayakan pendini pada inang dan tidak menyebabkan vaksin membentuk cacingan yang sangat tidak praktis(6).

Salah satu produk vaksin mastitis yang beredar di pasaran adalah JS Bacterin dan Maitguard untuk bakteri coliform dan Endovac bosi untuk bakteri Gram negatif. Vaksin-vaksin tersebut telah banyak digunakan oleh peternak di Amerika Serikat, Selandia Baru dan Australia serta dapat menurunkan kejadian mastitis sampai dengan 60%(9).

Percobaan sebelumnya menunjukkan, bahwa bakteri dari jenis coli form seperti E. coli dapat dimutasi dengan iradiasi gamma pada kisaran dosis > 600 Gy(10). Protein yang bersifat antigen masih terdeteksi pada kisaran 60 kDa dan mengalami peningkatan konsentrasi(11). Selain E. coli telah dilakukan pula penelitian pembuatan bahan vaksin iradiasi dengan menggunakan isolat bakteri Brucella abortus yang termasuk jenis coli form. Bakteri ini merupakan penyebab penyakit keguguran pada hewan maupun manusia. Tipe vaksin yang digunakan adalah vaksin inaktif rekombinan. Rekombinansi dilakukan untuk memahami bakteri dan mengembangkan gen plasmid bakteri E. coli sehingga B. abortus memiliki karakteristik membang memori yang sama dengan E. coli. Selanjutnya mutan tersebut dimutasi dengan iradiasi sinar gamma dengan dosis 300 Gy. Vaksin inaktif hasil iradiasi tersebut ternyata mampu meningkatkan imunitas yang lebih baik dibandingkan dengan hasil pemanasan suhu 65 °C(12).

BAHAN DAN METODE

BAHAN. Bahan-bahan yang digunakan pada penelitian ini adalah Klebsiella pneumoniae K3 dari sampel susu sapi yang terinfeksi mastitis di Garut, medium Tryptic Soy Broth (TSB) Pronadius®, Agar bacteriological Oxoid®, Larutan Lowery Merck®, larutan untuk elektroforesis Biorad®, Nal0,83%, aluhtiden, aseton Merck®, etanol Merck®, larutan Turk Merck®, larutan Hayem Merck®, dan Tryp nan blue Merck®.

METODE. Penentuan fase mid log A. pneumoniae. Biakan yang berumur 1 hari pada agar miring TSA diinokulasi ke dalam 30 mL lalu disikat pada suhu 37 °C dengan agitasi 120 rpm selama 24 jam, direndam sebagai biakan inoculum. Kekeringan cobaan dilakukan dengan spektrofotometer pada λ 660 nm, kemudian sebanyak 10% v/v (10^7 sel/mL) dimasukkan ke dalam 30 mL medium TSB untuk pembuatan kurva tambuh. Nilai absorbansi biakan diukur pada merit ke-0, 30, 60, 90, 150, 210, 270 dan 330. Hasil yang diperoleh dilakukan dengan tabulasi sebagai sumbasi dan absorbansi sebagai sumbasi, untuk menentukan fase mid log. Fase mid log ditentukan berdasarkan kecepatan perubahan nilai absorbansi tertinggi(13).

Penentuan dosis inaktivasi K. pneumoniae hasil iradiasi gamma. Biakan pada fase mid log dipun dengan dosis 10^7 sel/mL dan ditempatkan di dalam vial gelas sebanyak 10 mL. Penentuan jumlah sel dilakukan dengan cara memeriksa nilai absorbansi pada peracuan regresi kurva standar absorbansi terhadap jumlah sel. Selanjutnya dilakukan secara gamma dengan dosis 0, 100, 200, 300, 400, 600, 800, 1000 dan 1500 Gy di Irradiator Gamma Chamber 4000 A dengan leluar radiasi 1089.59 Gy/jum. Biakan hasil iradiasi kemudian dilihat jumlah selnya dengan teknik drop test untuk uji inaktivasi dalam medium TSA(14).

Penentuan waktu inaktivasi K. pneumoniae hasil pemanasan suhu 65 °C. Biakan pada fase mid
log disentriifugasi pada kecepatan 10000 rpm dan suhu 1°C selama 10 menit. Kemudian biakan dibias dengan NaCl 0.85% sebanyak 2 kali. Penentuan jumlah sel dilakukan dengan cara memasukkan nilai absorbansi pada persamaan regresi kurva standar absorbansi terhadap jumlah sel. Pelat yang diperoleh diencerkan hingga diperoleh jumlah sel 10^5 sel/mL dan ditempatkan di tabung inkubasi sebanyak 5 mL. Selanjutnya diperpanaskan dalam “water bath” incubator selama 0, 5, 10, 15, 30, 45 dan 60 menit pada suhu 65°C. Biakan hasil pemanasan kemudian dihitung jumlah selnya dengan teknik droptest untuk uji inaktivasi dalam medium TSA. Biakan hasil pemanasan kemudian dihitung jumlah selnya dengan teknik droptest untuk uji inaktivasi dalam medium TSA(11).

HASIL DAN PEMBAHASAN

Gambar 1. Hubungan dosis iradiasi gamma (A) dan waktu pemanasan pada suhu 65°C (B) terhadap jumlah sel K pneumoniae.
waktu yang berbeda pada biakan bakteri menunjukkan adanya penurunan jumlah sel yang hidup sebanding dengan bertambahnya waktu (data tidak ditunjukkan). Waktu yang diperlukan untuk menginaktivasi sel bakteri \textit{K. pneumoniae}, yaitu setelah 30 menit. Bakteri \textit{coli}iform lainnya pun, \textit{E. coli} (10) dan \textit{X. enterocolitica} (7) tidak inaktivasi pada waktu sama, yaitu setelah 30 menit pemanasan suhu pada suhu 65 °C.

Konsentrasi protein sel \textit{K. pneumoniae} hasil iradiasi gamma dan pemanasan. Iradiasi dengan dosis berbeda pada biakan bakteri menunjukkan adanya perubahan konsentrasi protein sel bakteri \textit{K. pneumoniae} yang bervariasi (Gambar 2A). Sementara itu, konsentrasi protein total hasil iradiasi menunjukkan adanya pengaruh yang nyata \((P < 0.05)\). Pengaruh sangat nyata terjadi pada dosis yang selalu masih aktif, yaitu dosis 200 dan 400 Gy. Efek iradiasi terhadap molekul penting, antara lain pada molekul protein. Diasumsikan bahwa radiasi dapat mempengaruhi konfigurasi 3 dimensi molekul protein sehingga menjadi terbuka dan siap melakukan suatu reaksi (15).

Konsentrasi protein total dosis 0 Gy, yaitu 1.15 mg/mL, setelah diiradiasi konsentrasi protein total terendah terjadi pada dosis 200 Gy, sebesar 0.88 mg/mL, sedangkan tertinggi terjadi pada dosis 400 Gy, sebesar 1.45 mg/mL (Gambar 2A). Hal ini terjadi karena sifat asam dari kerusakan yang ditimbulkan oleh iradiasi gamma. Pengurangan dan pertambahan konsentrasi protein dapat disebabkan oleh perubahan dan gangguan pada protein tersebut, baik aktivitas maupun strukturnya. Khayumiti (17), menyatakan bahwa adanya kemungkinan kompetisi peningkatan aktivitas pembelahan sel terjadi pada dosis tertentu, tidak selalu mengikuti interval peningkatan dosisnya.

Seperti halnya dengan konsentrasi protein hasil iradiasi, ternyata waktu pemanasan yang berbeda menghasilkan konsentrasi protein sel bakteri \textit{K. pneumoniae} yang bervariasi (Gambar 2B). Secara statistik, konsentrasi protein total hasil pemanasan menunjukkan adanya pengaruh yang nyata \((P < 0.05)\). Konsentrasi protein mengalami penurunan setelah pemanasan dan perlakuan mengalami peningkatan kembali hingga waktu pemanasan 45 menit.

![Gambar 2. Konsentrasi protein \textit{K. pneumoniae} hasil iradiasi gamma (A) dan pemanasan pada suhu 65 °C (B).](image)
kejutan panas (Heat Shock Response)\(^{(19)}\).

Karakteristik profil protein *K. pneumoniae* hasil iradiasi gamma dan pemanasan. Hasil elektroforesis SDS-PAGE protein total sel *K. pneumoniae* menunjukkan bahwa protein dalam sel tersebut memiliki intensitas konstansia berbeda (Gambar 3). Secara statistik, profil protein hasil iradiasi dan pemanasan berbeda nyata dengan kontrol, sedangkan profil protein antar dosis iradiasi atau waktu pemanasan tidak berbeda nyata.

Hasil dari analisis laboratorium *Image* menunjukkan protein pada dosis 0 Gy (kontrol) memiliki jumlah pita sebanyak 12 buah, sedangkan protein sel yang diiradiasi memiliki jumlah pita sebanyak 18 untuk dosis 400 Gy dan 17 buah untuk dosis 600 Gy dan 800 Gy. Selain itu, intensitas pita-pita tersebut diiradiasi cenderung meningkat. Hal ini terjadi karena adanya perubahan yang diakibatkan oleh iradiasi sinar gamma, baik pada stuktur maupun ikatan proteinnya. Perubahan struktur dapat diakibatkan oleh denaturasi protein, degradasi protein, maupun perubahan DNA.

Protein yang terdenaturasi mengalami dua kemungkinan, yaitu pengembangan rantai peptida dan pemecahan protein menjadi unit yang lebih kecil tanpa disertai pengembangan molekul. Kemungkinan pertama protein yang terdegradasi pula yang terjadi pada saluran dan sementara yang kedua terjadi pada bagian-bagian molekul yang bergabung dalam ikatan sekunder. Ikatan-ikatan yang dipengaruhi oleh proses denaturasi ini adalah ikatan hidrogen, ikatan hidrophobik misalnya pada leusin, valin, fenilalanin, triptofan\(^{(18)}\), Alatas\(^{(16)}\), menambahkan bahwa selain terjadian denaturasi protein, dimungkinkan terjadi degradasi protein. Degradasi protein dapat menyebabkan protein tersebut kehilangan fungsi sebagai protein dan degradasi struktur dapat berasal dari hilangnya gugus samping.

Munculnya protein baru dapat terjadi karena adanya perubahan rantai DNA yang merupakan sumber informasi dalam sintesis protein. Lebih banyaknya protein yang terdeteksi pada dosis 400 Gy dapat disebabkan pula oleh masih aktifnya sel melakukan metabolisme dan replikasi. Pada dosis inaktif, yaitu dosis 600 Gy dan 800 Gy jumlah pita yang muncul lebih sedikit karena sel telah inaktif. Antigen protein bakteri *K. pneumoniae* pada berat molekul 35, 36, dan 60 kDa mengalami perubahan dengan peningkatan dari intensitas warna. Hal ini memperkuat hasil konsentrasi protein dengan metode Lowry (Gambar 1 & Gambar 2), dimana kadar protein hasil iradiasi mengalami perubahan yang nyata.

Profil protein hasil iradiasi ternyata tidak terlalu berbeda dengan hasil pemanasan (Gambar 3). Pita yang terbentuk setelah pemanasan 15 menit sebanyak 15 pita, pada pemanasan 30 menit bertambah menjadi 18 pita, sedangkan pada pemanasan 45 menit, pita yang terbentuk menurun menjadi 17 pita. Terbentuknya pola yang hampir sama menunjukkan bahwa pemanasan tidak mengubah secara total protein antigen seiring dengan lamanya waktu pemanasan. Intensitas profil protein yang mengalami peningkatan kemungkinan karena dihasilkannya protein dari jenis HSP.

Protein antigen dengan berat molekul pada 35, 36, dan 60 kDa dapat terdeteksi pada perlakuan pemanasan seperti halnya dengan hasil iradiasi. Tetapi bila dilihat kadarnya berdasarkan intensitas, ternyata hasil pemanasan lebih rendah dibandingkan dengan hasil iradiasi. Protein dengan BM 35 kDa dan 36 kDa hasil pemanasan menunjukkan terjadinya peningkatan kadar protein, sedangkan pada BM 60 kDa tidak mengalami peningkatan. Peningkatan terjadi karena efek pemanasan, dimana protein tersebut merupakan kelompok HSP. Hasil elektroforesis pun menunjukkan adanya pita-pita baru yang menunjukkan bahwa terbentuk HSP pada berat molekul tersebut. Jadi, hasil profil protein dengan cara elektroforesis membuktikan bahwa HSP memang terbentuk. Pemanasan dapat menyebabkan terjadinya denaturasi, tetapi tidak ada ikatan kovalen pada kerangka rantai polipeptida yang rusak. Deret asam amino khas protein tersebut tetap utuh setelah denaturasi, walaupun aktivitas biologi hampir semua protein menjadi rusak.

SIMPULAN

Iradiasi gamma memiliki potensi untuk digunakan dalam pembuatan bahan vaksin, karena penggunaan dosis iradiasi yang tidak terlalu tinggi, cukup efektif dalam menginaktivasi sel bakteri tanpa harus menghilangkan
kemampuan antigeniknya. Selain itu, intensitasnya cenderung meningkat dibandingkan dengan pemanasan. Tetapi hal tersebut perlu dibuktikan lebih lanjut dengan pengujian secara in vivo menggunakan hewan percobaan.

DAFTAR PUSTAKA

1. IAEA. Combating infection in developing countries. Vienna, Austria; 2000.