Spektrofotometri Derivatif dan Aplikasinya dalam Bidang Farmasi

LILIEK NURHIDAYATI*
Fakultas Farmasi Universitas Pancasila
Jalan Srengseng Sawah, Jagakarsa, Jakarta Selatan 12640.

Diterima 15 Februari 2007, Disetujui 9 Mei 2007

Abstract: Derivative spectrophotometry is a method for the simultaneous determination of drug mixtures due to their overlapping spectra. Since the practical introduction of the concept of spectral data derivatization, the derivative spectrophotometry technique was applied. This review describes the theoretical and instrumental aspects of derivative spectrophotometry and some of its applications in pharmaceutical analysis since 1999.

Keywords: derivative spectrophotometry, theory, instrumental aspects, pharmaceutical analysis.

PENDAHULUAN

Kesopanan derivatisasi spektra diperkenalkan pertama kali lebih dari lima puluh tahun lalu. Metode spektrofotometri derivatif atau metode kurva turunan adalah salah satu metode spektrofotometri yang dapat digunakan untuk analisis campuran beberapa zat secara langsung tanpa harus melakukan pemisahan terlebih dahulu walaupun dengan panjang gelombang yang berbeda. Penggunaan spektrofotometri derivatif sebagai alat bantu analisis meningkat seiring dengan perkembangan dunia elektronik yang pesat terutama teknologi mikrokomputer dalam tiga puluh tahun terakhir. Akhir-akhir ini penggunaan spektrofotometri derivatif makin mudah dengan meningkatnya daya pisah instrumen analitik yang dilengkapi mikrokomputer dengan perangkat lunak yang sesuai sehingga mampu menghasilkan spektra derivatif secara cepat. Fasilitas ini memungkinkan analisis multikomponen dalam campuran yang spektranya saling tumpang tindih.

Beberapa keuntungan dari spektrum derivatif antara lain: spektrum derivatif memberikan gambaran struktur yang terinci dari spektrum serapan dan gambaran ini makin jelas dari spektrum derivatif pertama ke derivatif keempat. Selain itu, dapat dilakukan analisis kuantitatif suatu komponen dalam campuran dengan bahan yang panjang gelombangnya saling berdekatan. Bila dibandingkan dengan kromatografi cair kinerja tinggi (KCKT), metode spektrofotometri derivatif relatif lebih sederhana, alat dan biaya operasionalnya lebih murah dan waktu analisinya lebih cepat.

TEORI DAN ASPEK INSTRUMEN

Derivatisasi. Pada spektrofotometri konvensional (derivat konv), spektrum serapan merupakan plot serapan (A) terhadap panjang gelombang (λ). Spektrum elektronik biasanya memperlihatkan pita yang lebar. Pada metode derivatif, plot A terhadap λ ini ditransformasikan menjadi plot dA/dλ atau dA/λ² terhadap λ untuk derivatif pertama dan d²A/dλ² terhadap λ untuk derivatif kedua, dan seterusnya. Metode spektrofotometri derivatif merupakan metode manipulatif terhadap spektra pada spektrofotometri ultraviolet dan cahaya tampak (uv-vis).

Penentuan panjang gelombang serapan maksimum yang lebih akurat menggunakan derivatisasi spektra. Proses yang terjadi dalam derivatisasi data spektra adalah pendiferensialan kurva secara matematis yang tak lain adalah menentukan kemiringan/gradient serapan antara panjang gelombang tertentu secara menyeluruh seperti tampak dalam Gambar 1.

Penentuan besar gradient secara individual adalah plot dA/dλ terhadap λ untuk mendapatkan plot derivatif pertama. Plot derivatif pertama ini dapat diturunkan lagi dengan cara yang sama untuk mendapatkan harga d²A/dλ², yang bila dipotong terhadap panjang gelombang menghasilkan plot derivatif kedua. Pengulangan proses ini menghasilkan orde yang lebih tinggi, plot derivatif ke-n, atau dⁿA/
Gambar 1. Penentuan gradien dari spektrum derivat kenol.

d\(\Delta\) terhadap \(\lambda\). Sebagai ilustrasi proses pengulangan, dari derivat kenol sampai dengan kedua ditunjukkan pada Gambar 2.

Spektrum derivatif dihasilkan oleh spektrofotometer yang dirancang untuk melakukan transformasi elektronik. Derivatif \(d\lambda/d\Delta\) didekati dengan meningkatkanya rasio \(\Delta\lambda/\Delta\lambda\), di mana \(\Delta\lambda\) adalah perubahan serapan terhadap perbedaan \(\Delta\lambda\). Makin kecil \(\Delta\lambda/\Delta\lambda\) maka mendekati derivatif sesungguhnya \(d\lambda/d\Delta\). Selalu ada noise yang menutupi sinyal sampel sebagai konsekuensi efek elektronik dan instrumen, bila \(\Delta\) dibuat sangat kecil noise akan mendominasi derivatif.

Mode derivatif pertama dan kedua adalah fitur standar microprocessor spektrofotometer uv-vis dan beberapa instrumen dilengkapi dengan mode derivatif ketiga, keempat, kelima sampai dengan ketujuh. Perangkat lunak komputer juga tersedia untuk menangkap data spektro uv-vis sampai dengan derivat kesembilan.

Analisis kuantitatif. Panjang gelombang serapan maksimum pada suatu senyawa akan menjadi panjang gelombang zero-crossing pada spektrogram derivatif pertama, panjang gelombang tersebut tidak mempunyai serapan atau \(d\lambda/d\lambda = 0\). Metode zero-crossing memisahkan campuran biner dari spektrum derivatifnya pada panjang gelombang pada saat komponen pertama tidak ada sinyal. Pengukuran pada zero-crossing tipic komponen dalam campuran merupakan fungsi tunggal konsentrasi dari yang lainnya.
Bila panjang gelombang zero crossing masing-masing senyawa tidak sama, maka penentuan kadar campuran dua senyawa dapat dilakukan tanpa pemisahan terlebih dahulu. Bila kedua pita serapan mempunyai panjang gelombang yang hampir sama akan terjadi pelebaran pita, maka curva derivatif pertama tidak akan membantu pemisahan spektranya. Pada situasi tersebut maka dicoba derivatif kedua(10).

Metode spektrofotometri derivatif dapat digunakan untuk analisis kuantitatif zat dalam campuran yang spektrumnya mungkin tersembunyi dalam suatu bentuk spektrum besar yang saling tumpang tindih dengan menggabungkan proses pemisahan zat yang beringkat-tingkat.

Dasar perhitungan kuantitatif spektrofotometri derivatif mengikuti hukum Lambert-Beer, dimana serapan derivatif ke-n adalah:

\[
\frac{d^nA}{d\lambda} = d^n_e \times \lambda \times c
\]

Di mana:
- \(d^n_e\) = serapan
d\(e\) = daya serap molar (M^4 cm^-1)
d\(c\) = konsentrasi molar (M)
d\(\lambda\) = tebal sel (cm)

Secara teoritis dA/d\lambda adalah nol pada \(\lambda_{max}\) untuk pita pada spektrum normal (spektrum derivatif kenol). Spektrum derivatif kedua d^2A/d\lambda^2 terhadap \(\lambda\) memiliki dua maksimum dengan sebuah minimum di antara kedannya, pada \(\lambda_{max}\), pita spektrum asalnya. Pada prinsipnya tinggi puncak (dihitung dari d^2A/d\lambda^2=0) yang disebut dengan amplitudo proporsional dengan konsentrasi analiti. Untuk analisis kuantitatif, hanya amplitudo terhadap konsentrasi yang diukur(15).

Untuk suatu campuran (M) dari dua spesies A dan B yang tidak bermerasakan menyuarap di daerah uv-cabaya tampak dengan besar serapan:

\[A_M = A_A + A_B = e_{\lambda A}c_A + e_{\lambda B}c_B\]

Sehingga

\[
\frac{dA_M}{d\lambda} = \frac{de_{\lambda A}}{d\lambda}c_A - \frac{de_{\lambda B}}{d\lambda}c_B
\]

Untuk campuran biner, nilai absolut derivatif dari crossing tiap komponen dalam campuran merupakan fungsi tanggal konsentrasi dari yang lainnya(15).

Untuk pengukuran lebih dari dua analis dilakukan penentuan zero-crossing berurutan. Atau, kurva kalibrasi dapat dibuat pada panjang gelombang yang sinyal rata-ratanya adalah jumal atau selisih sinyal individual dari dua atau lebih analit(16).

Bila campuran biriner memiliki panjang gelombang zero-crossing lebih dari satu, maka yang dipilih untuk dijadikan panjang gelombang analisis adalah panjang gelombang zero-crossing yang serapan pasangannya dan campurannya persis sama, karena pada panjang gelombang tersebut dapat secara selektif mengukur serapan senyawa pasangannya dan memiliki serapan yang paling besar. Pada serapan yang paling besar, serapannya lebih stabil sehingga kesalahan analisis dapat diperkecil(16).

Umumnya masalah kuantitatif dapat dibagi dua:
(a)Senyawa tunggal atau analisis multikomponen dengan puncak serapan saling tumpang tindih.
(b)Konsentrasi analit memiliki hubungan linier dengan absorb si pada panjang gelombang tertentu. Pada spektra derivatif, konsentrasi analit memiliki hubungan linier dengan amplitudo pada puncak derivatif ke-n pada panjang gelombang tertentu.

\[
\frac{d^nA}{d\lambda^n} = \frac{d^n e}{c \cdot l}
\]
Kontribusi gangguan specie background, yang dapat didapatkan dari pengendalian pola masing-masing spesies, biasanya disebabkan oleh jenis spesies terkait. Dalam hal ini, pemilihan parameter yang sesuai dengan lingkungan masing-masing spesies sangat penting. Pada konteks ini, metode yang digunakan untuk penentuan parameter tersebut adalah metode regresi linier.

Pemilihan parameter yang tepat dapat mempengaruhi hasil akhir. Misalnya, dalam penentuan parameter kepekaan terhadap gangguan, penting untuk mempertimbangkan faktor-faktor seperti densitas populasi, kecepatan pergerakan, dan jenis spesies. Penentuan parameter yang tepat dapat memastikan bahwa metode yang digunakan efektif dalam mengurangi gangguan spesies.

Penentuan parameter yang tepat memerlukan pengetahuan ilmu pengetahuan lingkungan yang mendalam. Dalam hal ini, pengetahuan tentang hubungan antara parameter dan kondisi lingkungan sangat penting. Untuk itu, penelitian pada lapangan dan laboratorium harus dilakukan secara mendalam.

Penelitian ini menunjukkan bahwa penentuan parameter yang tepat dapat memberikan hasil yang lebih baik dalam mengurangi gangguan spesies. Selain itu, penentuan parameter yang tepat juga dapat memberikan informasi yang lebih akurat dalam mengidentifikasi gangguan spesies.

Dalam hal ini, pengetahuan ilmu pengetahuan lingkungan yang mendalam sangat penting. Dalam hal ini, pengetahuan tentang hubungan antara parameter dan kondisi lingkungan sangat penting. Untuk itu, penelitian pada lapangan dan laboratorium harus dilakukan secara mendalam.

Penelitian ini menunjukkan bahwa penentuan parameter yang tepat dapat memberikan hasil yang lebih baik dalam mengurangi gangguan spesies. Selain itu, penentuan parameter yang tepat juga dapat memberikan informasi yang lebih akurat dalam mengidentifikasi gangguan spesies.
mendapatkan spektrum yang tidak tergantung pada konsentrasi analit yang digunakan sebagai pembagi. Bila dibandingkan dengan metode zero-crossing, pengukuran menggunakan rasio spektra derivatif lebih mudah dan sinyal analit lebih tinggi. Di sampling itu, adanya maksimum dan minimum pada rasio spektra derivatif memberikan kemungkinan untuk penentuan kadar komponen-komponen tersebut bila terdapat komponen aktif dan eksipien lain yang mempengaruhi penetapan kadar[16].

RESOLUSI CAMPURAN BINER DAN TERNER MENGGUNAKAN RASIO SPEKTRA DERIVATIF

Bila digunakan sel setebal 1 cm, spektrum serapan campuran tiga komponen A, B, dan C ditentukan dengan persamaan:

\[A_{ij} = e_{ij} C_{A} + e_{ij} C_{B} + e_{ij} C_{C}, \]

\[A_{ij}, \text{ adalah serapan campuran pada } \lambda_{i}, e_{ij}, e_{ij}, e_{ij}, e_{ij}, \]

\[\text{adalah daya serap molar A, B dan C pada } j, \text{ C}_{A}, \text{ C}_{B}, \text{ dan } C_{C} \text{ adalah konsentrasi molar dari A, B dan C.} \]

Bila spektrum ini dibagi dengan spektrum larutan standar dari komponen A pada konsentrasi \(C_{A} = e_{A} C_{A} \) akan diperoleh:

\[\frac{A_{ij}}{A_{A ij}} = \frac{C_{A}}{C_{A}} \frac{C_{B}}{C_{A}} \frac{C_{C}}{C_{A}} \]

(i)

Rasio spektrum derivatif pertamanya:

\[\frac{d}{d\lambda} \frac{A_{ij}}{A_{A ij}} - \frac{dC_{B}/d\lambda}{C_{A}} \frac{dC_{C}/d\lambda}{C_{A}} \frac{dC_{ij}/d\lambda}{C_{A}} \]

(ii)

Bila \(C_{A} = 0 \), akan merupakan campuran biner A dan B. pada keadaan ini:

\[\frac{d}{d\lambda} \frac{A_{ij}}{A_{A ij}} = \frac{dC_{B}}{C_{A}} \frac{dC_{ij}}{C_{A}} \]

(iii)

Dari persamaan tersebut bisa dilihat bahwa rasio spektrum derivatif campuran biner hanya ditentukan oleh besarnya \(C_{B} \) dan \(C_{C} \), tidak tergantung pada besarnya \(C_{A} \) dalam campuran.

Dengan mengkombinasikan teknik zero-crossing dan rasio spektra derivatif, kadar campuran ternar bisa ditentukan. Persamaan (ii) menunjukkan bahwa rasio spektrum derivatif campuran ternar hanya tergantung pada \(C_{A}, C_{B}, \) dan \(C_{C} \), dan tidak tergantung pada \(C_{D} \). Konsentrasi B dan C dapat ditentukan menggunakan metode zero-crossing dengan mengukur besarnya derivatif pada suatu panjang gelombang.

Derivatif kedua persamaan (i) adalah:

\[\frac{d^{2}}{d\lambda^{2}} \frac{A_{ij}}{A_{A ij}} - \frac{d^{2}C_{B}/d\lambda^{2}}{C_{A}} \frac{d^{2}C_{ij}/d\lambda^{2}}{C_{A}} \]

Dari persamaan ini bisa diketahui bahwa spektrum hanya ditentukan oleh \(C_{B}, \) \(C_{C} \), dan \(C_{A} \).

APLIKASI

Spectrofotometri derivatif telah digunakan secara luas pada analisis bahan anorganik, penentuan konstanta ionisasi senyawa kimia, keefisien partisi obat antara lapisan lipid dan air, analisis klinis, analisis makanan, dan penetapan kadar di bidang farmasi.

Dalam bidang farmasi, karena terkait dengan terapi, penetapan kadar obat adalah masalah analisis dalam kontrol kualitas pada industri farmasi. Spectrofotometri derivatif adalah teknik analisis dengan kemampuan memisahkan campuran obat yang memiliki spektra tumpang tindih. Selain itu, telah digunakan pula untuk penetapan kadar obat yang tercampur dengan hasil perurnaannya.

Beberapa karakteristik analisis yang menggunakan spektrofotometri derivatif terdapat pada Tabel I.

Salah satu contoh analisis dari Tabel I adalah penetapan kadar fenilpropanolamina dalam sedimen farmasi secara spektrofotometri derivatif kedua. Fenilpropanolamina hidroklorida (PPA-HCl) dalam air memiliki panjang gelombang serapan maksimum pada 210 nm dan 256 nm dengan absorbivitas molar 3778 dan 156 mol⁻¹ cm⁻¹. Untuk menaikkan sensitivitas penentuan kandarnya, PPA-HCl direaksikan terlebih dahulu dengan 2-hidroksinarthaidehidra (HN) dalam media kloroform-metanol. Analisis dilakukan secara spektrofotometri derivatif kedua karena pereaksinya memiliki serapan pada panjang gelombang maksimum derivatif pertama turunan HN-PPA. Spectrofotometri derivatif kedua pada analisis tersebut memiliki sensitivitas yang lebih besar dari pada derivat kedua. Kadar PPA

![Gambar 4. Spektrum serapan derivatif kedua fenilpropanolamina. Konsentrasi: 1) 0,5; 2) 1,0; 3) 1,5 dan 4) 2,0 μg/ml fenilpropanolamina.](image)
<table>
<thead>
<tr>
<th>Senyawa</th>
<th>Pelarut</th>
<th>Orde derivatif</th>
<th>λ analisis (nm)</th>
<th>Rentang linearis (µg·ml⁻¹)</th>
<th>Pastaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiprphil HCI (AH) dan parfinoxin (P)</td>
<td>HCl 0,1 N pertama</td>
<td>254,4 (AH)</td>
<td>10-30 (AH)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>239,2 (P)</td>
<td>2-6 (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asam folat (AF), piridoksin (P) dan tiamin (T)</td>
<td>buffer Na-asetat pH 5,5 pertama</td>
<td>266 (AF); 266, 282 dan 334 (P); 282 (T)</td>
<td>1,02-14,28 (AF); 1,00-16,00 (P) dan 6,00-20,00 (T)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Metamipron (M) dan klor diazepoksid (K)</td>
<td>HCl 0,1 N pertama</td>
<td>245,7 (M)</td>
<td>10-30 (M)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>258,2 (K)</td>
<td>2-7 (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fentanylbutazon (F) dan metamipron (M)</td>
<td>HCl-metanol 0,1 N pertama</td>
<td>239,9 (F)</td>
<td>4-22 (F)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>268,0 (M)</td>
<td>4-20 (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kofein</td>
<td>air</td>
<td>kedua ketiga</td>
<td>2,0-10,0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fentanylbutazon (F) dan propafenon (P)</td>
<td>NaOH 0,1 N pertama</td>
<td>246,7 (F)</td>
<td>4-12 (F)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Vitamin B1, B6, B12</td>
<td>HCl 0,1 N kedua</td>
<td>228,9 (1), 306,6 (6), 361,7 (12)</td>
<td>4-20</td>
<td>13a</td>
<td></td>
</tr>
<tr>
<td>Quinolin yellow-E (104), sunset yellow (E-116)</td>
<td>buffer Na-asetat pH 4,5 kedua</td>
<td>410,0 (E-104)</td>
<td>3-15</td>
<td>13b</td>
<td></td>
</tr>
<tr>
<td>Karbooksamin maleat (KM) dan triaminodon (T)</td>
<td>metanol pertama</td>
<td>239,8 (KM)</td>
<td>10-59 (KM)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>260,0 (T)</td>
<td>5-25 (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teofilin(T) dan salbutamol (S)</td>
<td>NaOH 0,1N pertama</td>
<td>270,4 (T)</td>
<td>2-15,3 (T)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Losartan</td>
<td>air</td>
<td>275,1 (S)</td>
<td>3-15,2 (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triptidina HCl (TH) dan pseudoecodron HCl (PH)</td>
<td>air pertama</td>
<td>232,5</td>
<td>2-50</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β-karoten (B) dan astaxanthin (A)</td>
<td>aseton-DMSO (2:1)</td>
<td>rasio derivatif pertama</td>
<td>461 (B)</td>
<td>0-5 (B)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>466 (A)</td>
<td>0-4,6 (A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atenolol (A) dan nitidipina (N)</td>
<td>HCl-ethanol 0,1N pertama</td>
<td>236,6 (A)</td>
<td>8-25 (A)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>227,0 (N)</td>
<td>4-12 (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenilepropanolamin (PPH) parasetamol (PCT)</td>
<td>kloroform (turunan PPH), air (PCT)</td>
<td>388-392 (PPH)</td>
<td>65-325 (PCT)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>291 (PCT)</td>
<td>0,5-2,0 (PPH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasetamol(PCT) dan vitamin C (VC)</td>
<td>bufer fosfat pH 7,0 pertama</td>
<td>243,5 (VC)</td>
<td>sampai dengan 1,6x10⁻⁹ (PCT); 1,6x10⁻⁹ (VC)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Asetinol (A) dan klortlidon (K)</td>
<td>etanol pertama</td>
<td>270 (A)</td>
<td>100-500 (A)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>251 (K)</td>
<td>25-126 (K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promazin HCI (P) dan promazine sulfoksida (S)</td>
<td>HCl 0,1 N pertama, ketiga</td>
<td>268 nm (P)</td>
<td>1,5x10⁻⁷-7,7x10⁻⁷ M (P)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>342-344 nm (S)</td>
<td>7,4x10⁻⁷-7,4x10⁻⁷ M (S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ditentukan dengan mengukur amplitudo di antara panjang gelombang 392 nm dan 386 nm (Gambar 4). Kuva kalibrasi diperoleh pada rentang kadar 0,5-2,0 µg/ml dengan persamaan garis regresi y = 0,4385x dan koefisien korelasi 0,9998. Adanya zat aktif lain yang sering dikombinasikan dengan PPA-HCl seperti parasetamol, fenilotoksamina sitrat, klemestina hidrogen fumarat dan klorfentramina maleat serta eksipien seperti laktoza, metil paraben, sorbitol dan propilen glikol tidak mempengaruhi penetapan kadar PPA-HCl.

591015
SIMPULAN
Spektrofotometri derivatif dapat digunakan untuk penelapan kadar campuran dengan spektrum yang tumpang tindih tanpa pemisahan terlebih dahulu. Peranan spektrofotometri derivatif dalam analisis kimia sangat penting. Karena perangkat lunaknya mudah digunakan untuk instrumentasi analisis dan mikrokomputer, spektrofotometri derivatif banyak digunakan di berbagai bidang analisis kimia terutama bidang farmasi.

DAFTAR PUSTAKA