Isolasi dan Identifikasi Senyawa Hasil Fermentasi Kapang Endofit Pasak Bumi (Eurycoma longifolia Jack)

RATNA DJAMIL1*, TITI PARWATI2, NANI KHOMEJNI

1Fakultas Farmasi, Universitas Pancasila
Srengeng Sawah, Jagakarsa, Jakarta Selatan, 12640
2Pusat Penelitian Bioteknologi - LIPI, Jl. Raya Bogor Km. 46, Cibinong 16911

Diterima 27 Juni 2004, Disetujui 2 Agustus 2004

Abstract: Endophytic fungi of Pasak bumi (Eurycoma longifolia Jack) were inoculated to synthetic medium and incubated for 28 days. The fermented medium then were extracted with chloroform. The antioxidant activities by 1,1-diphenyl-2-picrylhidrazyl (DPPH) method showed that isolated compound has scavenging effect at IC50 285.7 ppm. Identification by interpretation of infra red spectra showed that the isolated compound was a terpenoid.

Key words: endophytic fungi, Eurycoma longifolia, antioxidant, DPPH, terpenoid

PENDAHULUAN

Indonesia memiliki kekayaan dengan berbagai jenis tanaman yang berkhasiat sebagai obat. Dari sekian banyak tanaman obat yang ada diantaranya adalah pasak bumi (Eurycoma longifolia Jack) yang termasuk famili Simaroubaceae dan banyak tumbuh di Kalimantan. Pasak bumi sudah lama dikenal oleh penduduk dan biasanya digunakan dalam pemakaian obat-obatan tradisional sebagai antimalaria, juga diketahui memiliki aktivitas antioksidan2,3,4). Antioksidan adalah suatu senyawa yang dapat menetralkan dan melawan bahan toksik (radikal bebas) dan menghambat terjadinya oksidasi pada sel sehingga mengurangi terjadinya kerusakan sel. Radikal bebas adalah atom atau molekul yang mengandung satu atau lebih elektron yang tidak berpasangan pada orbital luarnya. Hal ini mengakibatkan tidak stabilnya atom atau molekul tersebut. Agar menjadi stabil, radikal memerlukan elektron yang berasal dari pasangan elektron molekul di sekitarnya, sehingga terjadi perpindahan elektron dari molekul donor ke molekul radikal untuk menjadikan radikal tersebut stabil. Akan Reaksi tersebut, molekul donor menjadi radikal baru yang tidak stabil dan memerlukan elektron dari molekul disekitarinya untuk menjadi lebih stabil. Demikian

seterusnya, terjadi reaksi berantai perpindahan elektron-elektron5,6).

Pasak bumi yang mulai langska keberadaannya di alam akan mengalami pengurangan apabila terus menerus dieksplorasi tanpa diimbangi dengan peremajaan. Oleh karena itu, dicari alternatif lain yang lebih mudah sekaligus mempertahankan kelestariannya di alam dengan menggunakan mikroba endofitik. Mikroba endofitik adalah mikroba yang sebagian atau seluruh hidup berada dalam jaringan tanaman inang, mikroba endofitik ini hidup secara internal dalam jaringan hidupnya secara simbiosis mutualistik8,9).

Pada penelitian ini dilakukan inokulasi salah satu kapang endofit dari ranting tanaman pasak bumi (Eurycoma longifolia Jack) dengan nomor kode kelos 108 dan diinokulasi ke dalam dua jenis medium yaitu GYP (glucose yeast pepton) dan PDB (potato dextrose broth). Hasil inokulasi kemudian diekstraksi dengan kloroform. Kemudian inokulat dimurnikan dan diidentifikasi.

BAHAN DAN METODE

BAHAN. Kapang endofit Kelos 108 hasil isolasi dari ranting tanaman pasak bumi (Eurycoma longifolia Jack) koleksi Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong. Bahan kimia berupa kloroform, natrium klorida, Media GYP dan PDB dengan komposisi GYP: 5 g yeast extract; 5 g pepton, 10 g gliserol, 10 g glukosa, 5 g natrium klorida, dilarutkan

* Penulis korespondensi, Hp. 08128178958, e-mail: ratnadi_flup@yahoo.com
dalam 1 liter dan PDB: 2,9g PDB dilarutkan dalam 1 liter.


**HASIL DAN PEMBAHASAN**

Pada penelitian diketahui bahwa isolat kapang endofit kelos 108 tidak tumbuh pada media PDB. Hal ini mungkin dikarenakan komposisi media tersebut kurang cocok untuk media tumbuh. Untuk penelitian selanjutnya digunakan media GYP sebagai media karena pada media ini kapang endofit tumbuh dengan baik. Media PDA digunakan sebagai media regenerasi untuk meremajakan sel-sel kapang yang sudah tumbuh disimpan sebagai stok atau digunakan sebagai inokulan pada medium cair. Kapang yang tumbuh pada media PDA memiliki karakteristik warna putih rata, hijaie leba dengan bagian bawah berwarna kecoklatan.

Media GYP digunakan sebagai media kultur untuk pemberian nutrisi dan media pertumbuhan bagi kapang endofit kelos 108. Secara umum terlihat bahwa isolat membutuhkan bulatan putih yang makin lama makin besar dan karena kondisi berubah menjadi kehitaman. Medium cair tetap jernih walaupun warnanya makin lama makin tua. Warna medium yang makin tua menunjukkan adanya perubahan komposisi dalam medium (Tabel 1). Kemungkinan karena dihasilkannya metabolit sekunder oleh mikroba yang kemudian dilepaskan ke dalam medium.

Pengukuran pH yang dilakukan pada media GYP sebelum diekstraksi berguna untuk mengetahui keasaman atau kebasaan media. Tidak seperti kapang umumnya yang menyukai medium bersusunan asam untuk pertumbuhannya kapang endofit kelos 108 cenderung memperlihatkan kenaikan pH dari asam ke agak netral (Gambar 1). Kemungkinan peningkatan pH ini akibat adanya metabolit sekunder yang dihasilkan oleh mikroba atau sebab lain. Maka perlu dilakukan penelitian lebih lanjut mengingat potensinya dalam penyediaan sumber bahan obat alternatif.

<table>
<thead>
<tr>
<th>Tabel 1. Karakteristik isolat kapang endofit kelos 108 dalam media GYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hari</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>28</td>
</tr>
</tbody>
</table>

Gambar 2. Hubungan antara pH media dan waktu pengukuran.
Gambar 2. Hubungan antara bobot biomassa isolat dan waktu pengukuran.

Tabel 2. Hasil uji aktivitas antiasidsen menggunakan DPPH pada fraksi ke-3 dibandingkan dengan vitamin C sebagai kontrol positif

<table>
<thead>
<tr>
<th>Koncentrasi (ppm)</th>
<th>Absorban Sampel</th>
<th>Absorban Blanko</th>
<th>Peredaman (%)</th>
<th>IC&lt;sub&gt;50&lt;/sub&gt; (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIT C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,1165</td>
<td>0,1899</td>
<td>38,65</td>
<td>5,6</td>
</tr>
<tr>
<td>6</td>
<td>0,0885</td>
<td></td>
<td>53,39</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,0622</td>
<td></td>
<td>67,25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,0498</td>
<td></td>
<td>73,77</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,187</td>
<td></td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>Fraksi 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,1807</td>
<td>0,1899</td>
<td>4,87</td>
<td>235,7</td>
</tr>
<tr>
<td>50</td>
<td>0,1731</td>
<td></td>
<td>8,87</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0,1524</td>
<td></td>
<td>19,75</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 2. Hubungan antara bobot ekstrak kloroform dari biomassa isolat dan waktu pengukuran.

Penimbangan biomassa diperlukan untuk mengetahui pertumbuhan kapang endofit selama waktu inkubasi 28 hari dalam media GYP. Peningkatan berat biomassa kapang terlihat mengikuti pola pertumbuhan normal. Pada hari ke 21 sampai hari ke 28 kura berat biomassa mulai terlihat mendatar. Hal ini menunjukkan bahwa pada hari ke 21 mikrobe telah mencapai fase stasioner pertumbuhannya, sementara hari sebelumnya masih menjalani fase log (periode pertumbuhan yang cepat) (Gambar 2).

Ekstrak kloroform dari (biomassa) diperoleh dengan menyaring kapang dalam medium fermentasi dengan corong Buchner yang sudah dilapisi kertas saring, kertas saring dikeringkan dan ditimbang setelah itu kertas saring dipotong kecil lalu dimasukkan ke dalam tabung reaksi. Potongan kertas saring berisi biomassa kapang diekstraksi dengan kloroform sebanyak 3 kali. Ekstrak yang diperoleh dikumpulkan dan diuapkan hingga kering, lalu ditimbang. Ekstrak yang diperoleh tampaknya makin lama makin meningkat jumlahnya seiring lamanya waktu fermentasi (Gambar 3).

Hasil pengujian ekstrak kloroform (biomassa) dari hasil fermentasi selama 28 hari diidentifikasi dengan menggunakan KLT. Berdasarkan hasil
analisis, dikeluarkan bahwa pada hari 14, 21, 28 kapang endotif menghasilkan senyawa yang memiliki harga Rf (0,550, 0,550, 0,550) mendekati harga Rf (0,525) baku pembanding eurikoman.

Fraksinasi ini dilakukan pada ekstrak kloroform dari (biomassa) hasil penggabungan ekstrak kloroform (biomassa) hari ke-14, -21, dan -28. Pemisahan ekstrak kloroform (biomassa) dengan kromatografi kolom menggunakan fase diam silika gel 60 dan fase gerak kloroform-metanol (4:1) memberikan 3 fraksi dan hanya fraksi ke-3 yang menunjukkan pemisahan yang baik dengan hanya memberikan satu bercak. Dari fraksi ke-3 dilakukan identifikasi senyawa dengan pereaksi KLT. Berdasarkan hasil analisis didapat bahwa fraksi ke-3 memberikan hasil positif (berwarna biru) terhadap pereaksi semprot Liebermann Burchard sebagai penanda. Senyawa yang dihasilkan adalah senyawa terpenoid. Hasil analisa fraksi ke-3 memberikan informasi bahwa fraksi ke-3 tersebut memberikan serapan pada bilangan gelombang 1714,60 : 1743,5 cm⁻¹ yang karakteristik untuk karbonil. Hasil uji pendahuluan secara KLT dengan menggunakan pereaksi DPPH menunjukkan hasil positif (bercak berwarna kuning pucat). Setelah itu dilakukan uji aktivitas antioksidan dengan menggunakan DPPH dan vitamin C sebagai kontrol positif.

**SIMPULAN**

Dari hasil penelitian ini dapat disimpulkan bahwa senyawa yang dihasilkan oleh kapang endotif kelos 108 adalah terpenoid dan memiliki daya aktivitas antioksidan sebesar IC₅₀ 285,7 ppm.

**DAFTAR PUSTAKA**