Determination of Growth Curve and Antibacterial Activity of Ethyl Acetate Extract Bacterial Isolate (Te.325) on Staphylococcus aureus and Escherichia coli

  • Alfian Syarifuddin Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Magelang
  • Ratna Wijayatri Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Magelang
  • Ichsan Feri Kurniawan Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Magelang
  • Herma Fanani Agusta Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Magelang

Abstract

The development of infection cases and inappropriate use of antibiotics has led to cases of antibiotic resistance. An alternative to overcoming the many antibiotics that are already resistant to bacteria has led to the discovery of new antibiotics. One of the processes of discovering antibiotics is from microorganisms, namely bacteria. The exploration process for the discovery of antibiotics uses a bacterial growth phase approach, namely the stationary phase which produces secondary metabolites, one of, which are bacteria that contain antibiotic compounds. Te.325 isolate is a producer of bacterial antibiotics but The growth phase is not yet known and can be used to approach the process of obtaining antibiotics. The study was to obtain the growth phase time of the Te.325 isolate and to extract antibiotic compounds from the isolate. The determination of the growth curve is based on the weight of cell biomass and the absorbance value on UV/ Vis spectrophotometry of the culture sampled every day for 14 days of culture incubation. The results showed a log/exponential phase on 5th day and a stationary phase on 9th day. The activity test of the ethyl acetate extract was carried out using the well method with an extract concentration of 40%, which resulted in an average diameter of 8.04mm in Staphylococcus aureus and 9.035mm in Escherichia coli. The ethyl acetate extract of Te.325 has medium potency.

References

1. Ramadhan H. Isolasi actinomycetes penghasil antibiotik terhadap Escherichia coli dan Staphylococcus aureus
dari tanah sawah. In Prosiding Seminar Nasional dan Presentasi Imiah Perkembangan Terapi Obat Herbal
Pada Penyakit Degeneratif. 2011;1(1):50–64.

2. Wulandari W, Rahayu T. Aktivitas antibakteri isolat Actinomycetes dari sampel pasir Gunung
Merapi dengan lama fermentasi yang berbeda terhadap bakteri Escherichia coli multiresisten
antibiotik. Bioeksperimen: Jurnal Penelitian Biologi. 2015;1(2):53–9.

3. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of
actinomycetes and their antibacterial, antifungal and antiviral properties. Polish Journal of Microbiology.
2018;67(3):259–72.

4. Pujiati P. Isolasi actinomycetes dari tanah kebun sebagai bahan petunjuk praktikum mikrobiologi.
Florea : Jurnal Biologi dan Pembelajarannya. 2018;1(2):42–6.

5. Wulandari W. Aktivitas antibakteri isolat actinomycetes dari sampel pasir Gunung Merapi dan Bromo dengan
lama fermentasi yang berbeda terhadap bakteri Escherichia coli multiresisten antibiotik. Doctoral dissertation, Universitas Muhammadiyah Surakarta. 2014.

6. Harir M, Bendif H, Bellahcene M, Fortas Z, Pogni R. Streptomyces secondary metabolites. Basic biology and applications of actinobacteria. 2018;6:99-122.

7. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP,
Baranyi J, Peck MW. Lag phase is a distinct growth phase that prepares bacteria for exponential growth
and involves transient metal accumulation. Journal of bacteriology. 2012;194(3):686-701.

8. Kumari M, Myagmarjav BE, Prasad B, Choudhary M. Identification and characterization of antibioticproducing
actinomycetes isolates. American journal of Microbiology. 2013;4(1):24.

9. Pudi N, Varikuti GD, Badana AK, Gavara MM, Kumari S, Malla R. Studies on optimization of growth parameters for enhanced production of antibiotic alkaloids by isolated marine actinomycetes. Journal of Applied Pharmaceutical Science. 2016;6(10):181-8.

10. Aini NN, Sulistyani N. Isolation of actinomycetes from sugarcane (Saccharum officinarum) rhizosphere
and the ability to produce antibiotic. In 2019 Ahmad Dahlan International Conference Series on Pharmacy
and Health Science (ADICS-PHS 2019) 2019; 131-6.

11. Ramadhani MA, Sulistyan N. Uji aktivitas isolat actinomycetes (Kode Gst, Kp, Kp11, Kp16, T24, dan
T37) terhadap Staphylococcus aureus ATCC 25923 dan Escherichia coli ATCC 25922. 2018;01:29–37.

12. Syarifuddin A, Sulistyani N. Karakterisasi fraksi teraktif senyawa antibiotik isolat kp 13 dengan metode
densitometri dan KLT-semprot. Jurnal Ilmiah Ibnu Sina. 2019;4(1):156-66.

13. Mulyadi M, Sulistyani N. Aktivitas cairan kultur 12 isolat actinomycetes terhadap bakteri resisten.
Kes Mas: Jurnal Fakultas Kesehatan Masyarakat Universitas Ahmad Dahlan. 2013;7(2):89–96.

14. Syarifuddin A, Sulistyani N, Kintoko K. Activity of antibiotic bacterial isolate kp13 and cell leakage
analysis of Escherichia coli bacteria. Jurnal Ilmu Kefarmasian Indonesia. 2018;16(2):137-44.

15. Syarifuddin A, Sulistyani N, Kintoko. Profi l KLT bioautografi dan densitometri fraksi teraktif (isolate
kp13) dari bakteri rizosfer kayu putih (Melaleuca leucadendron L.). Jurnal Farmasi Sains dan Praktis.
2019;5(1):27–33.

16. Dahlan A, Wahyuni S, Ansharullah. Morfologi dan karakterisasi pertumbuhan bakteri asam laktat (um1.3a) dari proses fermentasi wikau maombo untuk studi awal produksi enzim amilase. Jurnal Sains dan Teknologi Pangan. 2017;2(4):657–63.

17. Setiawati S, Yusan RT. Actinomycetes as A source of potential antimicrobial and antibiofilm agents. Medical
and Health Journal. 2022;2(1):50-70.

18. Warsi W, Sulistyani N. The optimization of secondary metabolite production time and screening antibacterial
activity of actinomycetes isolate from tin plant rizosfer (Ficus carica). Jurnal Teknologi Laboratorium.
2018;7(1):15.

19. Khoiriyah H, Ardiningsih P. Penentuan waktu inkubasi optimum terhadap aktivitas bakteriosin Lactobacillus
sp. RED4. Jurnal Kimia Khatulistiwa. 2014;3(4):52-6.

20. Fitriana, Rusli. Penentuan waktu optimum produksi metabolit sekunder isolat bakteri actinomycetes dari
tanah rhizosfer akar tanaman jarak pagar (Jatropha curcas L.) terhadap bakteri patogen. As-Syifaa.
2018;10(1):74–82.

21. Syarifuddin A, Kamal S, Yuliastuti F, Pradani MPK, Septianingrum NMAN. Ekstraksi dan identifikasi
metabolit sekunder dari isolat al6 serta potensinya sebagai antibakteri terhadap Escherichia coli. Jurnal
Bioteknologi & Biosains Indonesia. 2019;6(2):210-8.

22. Nuthan BR, Rakshith D, Marulasiddaswamy KM, Rao HY, Ramesha KP, Mohana NC, Siddappa S, Darshan
D, Kumara KK, Satish S. Application of optimized and validated agar overlay TLC–bioautography assay for detecting the antimicrobial metabolites of pharmaceutical interest. Journal of chromatographic
science. 2020;58(8):737-46.

23. Setyaningsih D, Murti YB, Fudholi A, Hinrichs WL, Mudjahid R, Martono S, Hertiani T. Validated TLC
method for determination of curcumin concentrations in dissolution samples containing Curcuma longa
extract. Jurnal Ilmu Kefarmasian Indonesia. 2017;14(2):147-57.

24. Cita YP; Radjasa OK; Sudharmono P. Aktivitas Antibakteri isolat bakteri X2 yang berasosiasi spons
Xestospongia testudinaria dari Pantai Pasir Putih Situbondo terhadap bakteri Pseudomonas aeruginosa.
Jurnal Ilmu Kefarmasian Indonesia. 2017;14(2):206-11.
Published
2022-10-31
How to Cite
SYARIFUDDIN, Alfian et al. Determination of Growth Curve and Antibacterial Activity of Ethyl Acetate Extract Bacterial Isolate (Te.325) on Staphylococcus aureus and Escherichia coli. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 20, n. 2, p. 252-258, oct. 2022. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/1079>. Date accessed: 05 nov. 2024. doi: https://doi.org/10.35814/jifi.v20i2.1079.
Section
Articles