Optimization of Phycocyanin Production of Marine Cyanobacteria BTM 11 and its Antioxidant Properties Test

  • Baso Didik Hikmawan Fakultas Farmasi, Universitas Mulawarma
  • Swastika Praharyawan Pusat Riset Mikrobiologi Terapan, Badan Riset dan Inovasi Nasional (BRIN)
  • Kintoko Kintoko Fakultas Farmasi, Universitas Ahmad Dahlan


Phycocyanin (PC)-producing cyanobacteria has shown many pharmaceutical applications, the main one is the antioxidant properties. Biosynthesis of PC-producing cyanobacteria is affected by many factors like nitrogen availability and light intensity during cultivation. This study aims to analyze the optimum concentration of nitrogen and light intensity during the cultivation of PC biosynthesis of marine cyanobacteria BTM 11 and identify its antioxidant properties This study was an experimental laboratory method and the PC level was determined through the variation of sodium nitrate (NaNO3) as a source of nitrogen dissolved in media and using different light intensities. The most optimum nitrogen and light intensity values of PC were measured by its antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical capture method. Data was analyzed by one-way ANOVA and the post-hoc Duncan to see whether p<0.05. The result showed that there was a significant difference in the PC level that was cultivated with the variation of NaNO3 concentrations. The highest PC level was observed in media containing 525 mg of NaNO3 and the optimum light intensity of 4500 lux. The result of the antioxidant activity assay showed that the BTM11’s PC’s antioxidant activity had its IC50 at 91.89 μg/mL and the IC50 of ascorbic acid was 2.39 μg/mL


1. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry. 2015; 30(1): 11–26.

2. Henriksen EJ, Role of oxidative stress in the pathogenesis of insulin resistance and type 2 diabetes, 2nd ed. Elsevier Inc., 2019.

3. Zulaikhah ST. The role of antioxidant to prevent free radicals in the body. Sains Medika: Jurnal Kedokteran
dan Kesehatan. 2017. 8(1): 39

4. Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y. Phycocyanin: a potential drug for cancer treatment,” Journal of Cancer. 2017; (8)17: 3416–3429.

5. Zuorro A, Leal-Jerez, AG, Morales-Rivas LK, Mogollón-Londoño SO, Sanchez-Galvis EM, García-Martínez JB, Barajas-Solano AF. Enhancement of phycobiliprotein accumulation in thermotolerant Oscillatoria sp. through media optimization. ACS Omega. 2021; 6 (16): 10527–10536

6. Praharyawan S, Setyaningsih T, Susilaningsih D, Dian Y, Siregar I, Peningkatan kemurnian dan toksisitas ekstrak pigmen c-fikosianin dari sianobakteria laut Jaaginema sp. BTM-11 dengan menggunakan kitosan dan arang aktif enhancement. Jurnal Pascapanen dan Bioteknologi Kelautanan dan Perikanan. 2019; 14(1): 21–28

7. Buchweitz M. Natural solutions for blue colors in food. Elsevier Ltd, 2016.

8. Nur MMA, Garcia GM, Boelen P, Buma AGJ. Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode. Journal of Applied Phycology. 2019; 31(5): 2855–2867.

9. Schipper K, Fortunati F, Oostlander PC, Murakhi MA, Jabri HMSJH, Wijffels RH, Barbosa MJ. Production
of phycocyanin by Leptolyngbya sp. in desert environments. Algal Research. 2020; 47(September 2019): 101875.

10. Hoi SK, Winayu BNR, Hsueh HT, Chu H. Light factors and nitrogen availability to enhance biomass and
C-phycocyanin productivity of Thermosynechococcus sp. CL-1. Biochemical Engineering Journal. 2021;167(1): 107899

11. Rivera C, Niño L, Gelves G, Modeling of phycocyanin production from Spirulina platensis using different
light-emitting diodes. South African Journal. Of Chemical Engineering. 2021; 37(March): 167–178.

12. Zhang H, Yang C. Arginine and nitrogen mobilization in cyanoba cteria. Molecular. Microbiology. 2019.
111(4): 863–867.

13. Chen F, Zhang Y, Guo S. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic
culture. Biotechnology Letter. 1996; 18(5): 603–608.

14. Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria:
chemistry and biotechnological applications. Biotechnology Advance. 2019; 37( 2019): 422–443.

15. Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S. Extraction and purification of C-phycocyanin from
Spirulina platensis (CCC540). Indian Journal of Plant Physiology. 2014. 19(2): 184–188.

16. Prabakaran P, Ravindran AD. Effi cacy of different extraction methods of phycocyanin from Spirulina
platensis. International Journal of Life Science and Pharma Research. 2013; 1(1): 15–20.

17. B ec ker EW. Mi croa lga e bi ote chnol og y an d microbiology. Cambridge University Press. 1994.

18. Bennett A, Bogobad L, Complementary chromatic adaptation in a filamentous blue-green alga. Journal
of Cell Biology. 1973; 58(2): 419–435.

19. Bryant DA, Guglielmi G, de Marsac NT, Castets AM, Cohen-Bazire G. The structure of cyanobacterial
phycobilisomes: a model. Archives of Microbiology. 1979; 123(2): 113–127.

20. Gantar M, Simović D, Djilas S, Gonzalez W, Miksovska J. Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1. Journal of Biotechnology. 2012; 159(1–2): 21–26.

21. Silva LA, Kuhn KR, Moraes CC, Burkert CAV, Kalil SJ. Experimental design as a tool for optimization
of c-phycocyanin purification by precipitation from Spirulina platensis. Journal of Brazilian Chemical Society. 2009; 20(1): 5–12.

22. Eriksen NT. Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and
medicine. Applied. Microbiology and Biotechnology. 2008; 80(1): 1–14.

23. Esen M, Öztürk Ürek R. Nitrate and iron nutrition effects on some nitrate assimilation enzymes and
metabolites in Spirulina platensis. Turkish Journal of Biology. 2014; 38(5): 690–700

24. Kaewdam S, Jaturonglumlert S, Varith J, Nitatwichit C, Narkprasom K. Kinetic models for phycocyanin
production by fed-batch cultivation of the Spirulina platensis. International Journal of Geomate. 2019;17(61): 187–194.

25. Notonegoro, H, Setyaningsih I, Tarman K. Kandungan senyawa aktif Spirulina platensis yang ditumbuhkan
pada media walne dengan konsentrasi NaNO3 berbeda. Jurnal Pascapanen dan Bioteknologi Kelautanan dan Perikanan. 2018; 13(2): 111.

26. Romay C, González R, Ledón N, Remirez D, Rimbau V. C-Phycocyanin:A Biliprotein with antioxidant,
anti-inflammatory, neuroprotactive eff ects). Current Protein and Peptide Science. 2003; 4: 207–216.

27. Kedare SB Singh RP. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology. 2011; 48(4): 412–422.
How to Cite
HIKMAWAN, Baso Didik; PRAHARYAWAN, Swastika; KINTOKO, Kintoko. Optimization of Phycocyanin Production of Marine Cyanobacteria BTM 11 and its Antioxidant Properties Test. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 20, n. 2, p. 217-224, oct. 2022. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/1198>. Date accessed: 25 feb. 2024. doi: https://doi.org/10.35814/jifi.v20i2.1198.