Potential of The Tyrosinase Enzyme Inhibition by Standardized Ethanol Extract And Ethyl Acetate Fraction of Bengkoang Peel (Pachyrhizus erosus L.)

  • Zainur Rahman Hakim Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta 12640, Indonesia
  • Ratna Djamil Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta 12640, Indonesia
  • Novi Yantih Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta 12640, Indonesia
  • Ocitania Sanasih Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta 12640, Indonesia
  • Benni Iskandar School of Pharmacy, Faculty of Pharmacy, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City 110, Taiwan

Abstract

This study examined the tyrosinase inhibitory potential of bengkoang peel standardised ethanolic extract and ethyl acetate fractions. 450 g of bengkoang peel powder (Pachyrhizus erosus L.) was macerated with 96% ethanol for 2 x 24 h, filtered, and concentrated till viscous. Extract standardisation uses specific and non-specific parameters. Microplate colorimetric tyrosinase inhibition assays were performed. The result of plant determination identified the bengkoang peel as Pachyrhizus erosus (L.) Urb. The organoleptic test revealed a brownish-yellow viscous extract, fresh smell, and bitter taste. Ethanol-soluble extract was 47.60% and water-soluble 22.42%. Bengkoang peel ethanolic extract includes alkaloids, flavonoids, saponins, tannins, and steroids. The non-specific parameters showed loss of drying (9.71%), water content (7.28%), total ash (9.91%), acid-insoluble ash (3.68%), no residual solvent content, lead content (-0.2324±0.1729), cadmium content (-0.0841±0.3418), TPC of 1 x 101 CFU/g, and TYMC of 2.26 x 102 CFU/g. The ethanol extract (103.9263) and ethyl acetate fraction (81.8606) IC50 values of bengkoang peel decrease tyrosinase enzyme activity compared to control (25.1235 ppm). These results show that the ethanol extract met both particular and non-specific quality standards. Bengkoang peel ethyl acetate inhibited tyrosinase.

References

1. Lautenschlager S, Wulf HC, Pittelkow MR. Photoprotection. Lancet. 2007.

2. Sarkany R. Sun protection strategies. Medicine (United Kingdom). 2017.

3. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci [Internet]. 2013;14(6):12222–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709783/

4. Gilaberte Y, González S. Update on photoprotection. Actas Dermo-Sifiliográficas (English Ed [Internet]. 2010;101(8):659–72. Available from: https://www.sciencedirect.com/science/article/pii/S157821901070696X

5. Schalka S. New data on hyperpigmentation disorders. J Eur Acad Dermatology Venereol. 2017;31(Suppl. 5):18–21.

6. Comprehensive N, Network C. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Melanoma. Journal of the National Comprehensive Cancer Network : JNCCN. 2013.

7. Hakim ZR, Budiman A. The photoprotection of jamblang fruit (Syzygium cumini(L.) skeels) ethanolic extract as sunscreen by determining sun protection factor. Int J Pharm Res. 2019;11(4):1180–3.

8. Noor SU, Faridah, Magdalena P. In vitro enzyme tyrosinase inhibitory activity test on liquorice root extract cream (Glycyrrhiza glabra L.). J Ilmu Kefarmasian Indones. 2018;16(2):150–8.

9. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem [Internet]. 2019;34(1):279–309. Available from: https://doi.org/10.1080/14756366.2018.1545767

10. Hollinger JC, Angra K, Halder RM. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J Clin Aesthet Dermatol. 2018;11(2):28–37.

11. Lukitaningsih E, Bahi M, Holzgrabe U. Tyrosinase inhibition type of isolated compounds obtained from Pachyrhizus erosus. Aceh Int J Sci Technol. 2013;2(3):98–102.

12. Bashirah D, Putriana NA. Herbal cosmetics with potential as natural skin whitening. Farmasetika.com (Online). 2019;4(4):119–27.

13. Lukitaningsih E. Bioactive compounds in bengkoang (Pachyrhizus erosus) as Antioxidant and Tyrosinase Inhibiting Agents. Indones J Pharm. 2014;25(2):68–75.

14. Supari IH, Leman MA, Zuliari K. Antibacterial effectiveness of bengkuang seed extract (Pachyrhizus erosus) on the growth of Streptococcus mutans in vitro. Pharmacon. 2016;5(3):33–9.

15. Siregar ID, Kusuma HSW, Widowati W, Marpaung HH, Ferdinand S, Fachrial E, et al. Antioxidant and antityrosinase activities of ethanolic Pachyrhizus erosus peel and tuber extract. Maj Kedokt Bandung. 2019;51(2):75–81.

16. Primiani CN. Daidzein compound dynamic of yam bean (Pachyrhizus erosus) in blood and its potential to the female white mice. Pros Semin Nas FKIP UNS 2013. 2020;5(3):248–53.

17. Rante TRK, Simbala HEI, Mansauda KLR. Phytochemical Screening and Antioxidant Potential of (Stachytarpheta jamaicensis L.) Leaf Extract Using 1.1 Diphenyl-2-Picrylhydracyl (DPPH) Method. J MIPA. 2020;9(2):91–6.

18. Nurhasnawati H, Sukarmi S, Handayani F. Comparison of maceration and soxhletation extraction methods on the antioxidant activity of ethanol extract of malay apple (Syzygium malaccense L.). J Ilm Manuntung. 2017;3(1):91–5.

19. Health Department of Republic of Indonesia. Common Standard Parameters of Medicinal Plant Extract. I. Jakarta: Directorate General of Food and Drug Control; 2000. 3–33 p.

20. Saric S, Sivamani RK. Polyphenols and sunburn. Int J Mol Sci. 2016;17(9):1–22.

21. Sies H, Stahl W. Nutritional Protection Against Skin Damage From Sunlight. Annu Rev Nutr. 2004;24(1):173–200.

22. Health Department of Republic of Indonesia. Farmakope Herbal Indonesia. 1st ed. Health Department of Republic of Indonesia; 2008. 111–115 p.

23. Herrera-Arellano A, Flores-Romero S, Chávez-Soto MA, Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine. 2004 Jul;11(5):375–82.

24. Health Department of Republic of Indonesia. Materia Medika Indonesia. II. Jakarta: Directorate General of Food and Drug Control; 1978.

25. Johnson SS, Oyelola FT, Ari T, Juho H. In vitro. 2013;10:533–40.

26. Charissa M, Djajadisastra J, Elya B. Antioxidant activity assay, inhibition of tyrosinase and efficacy test of gel containing taya cortex (Nauclea subdita) extract on human skin. J Kefarmasian Indones. 2016;6(2):98–107.

27. Musoev A, Numonov S, You Z, Gao H. Discovery of novel DPP-IV inhibitors as potential candidates for the treatment of type 2 diabetes mellitus predicted by 3D QSAR pharmacophore models, molecular docking and de novo evolution. Molecules. 2019;24(16):1–13.

28. Pan J, Zhang Q, Zhang C, Yang W, Liu H, Lv Z, et al. Inhibition of dipeptidyl peptidase-4 by flavonoids: structure–activity relationship, kinetics and interaction mechanism. Front Nutr. 2022;9(May):1–17.
Published
2023-04-30
How to Cite
HAKIM, Zainur Rahman et al. Potential of The Tyrosinase Enzyme Inhibition by Standardized Ethanol Extract And Ethyl Acetate Fraction of Bengkoang Peel (Pachyrhizus erosus L.). JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 21, n. 1, p. 145-152, apr. 2023. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/1397>. Date accessed: 24 nov. 2024. doi: https://doi.org/10.35814/jifi.v21i1.1397.
Section
Articles