Andrographis paniculata Burm. F. in-silico analysis compounds that function as an insulin sensitizer therapy for type 2 diabetes via peroxisome proliferator activated gamma receptors (pparγ) receptor activator

  • Pristiyantoro Pristiyantoro IKIFA College of Health Science, East Jakarta, Jakarta 13470, Indonesia
  • Siswandono Siswandono Departement of Phamaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
  • Esti Mumpuni Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia

Abstract

Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, requires safer PPARγ-targeting therapies to overcome the limitations of current thiazolidinediones (e.g., hepatotoxicity of pioglitazone). Andrographis paniculata, a traditional medicinal plant, contains bioactive flavonoids with putative insulin-sensitizing effects, although their PPARγ binding mechanisms remain unexplored. This study conducted in silico screening of eight A. paniculata compounds against PPARγ (PDB:5Y2O) using: (1) molecular docking (Molegro Virtual Docker 2013.6.0.0) to calculate binding affinities (MolDock/Rerank scores) and hydrogen bond interactions; (2) physicochemical profiling (ChemDraw Ultra 22.2/Chem3D Ultra 22.2) for drug-likeness parameters; and (3) ADMET prediction (pkCSM) for pharmacokinetic and toxicity assessment, with pioglitazone as the positive control. The results showed that 5,4'-dihydroxy-7,8,2',3'-tetramethoxyflavone exhibited near-native binding (MolDock: -111.653 vs pioglitazone -137.994) with optimal ligand-receptor stabilization through strong hydrogen bonds (-7.840 kcal/mol) with Ser289, His323, and Tyr473, as well as hydrophobic interactions with Phe282 and Leu330. This compound also demonstrated better aqueous solubility (-3.404 vs -4.309 log mol/L; p<0.05) and a favorable safety profile (non-hepatotoxic, AMES-negative) despite lower Caco-2 permeability (0.141×10⁻⁶ cm/s). This study identifies 5,4'-dihydroxy-7,8,2',3'-tetramethoxyflavone as a lead PPARγ agonist from A. paniculata with enhanced safety and drug-like properties. The HBond score of -7.840 suggests improved target specificity compared to pioglitazone. In vitro validation of glucose uptake modulation is recommended to confirm its therapeutic potential.

References

[1] American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 37, suppl. 1, pp. S81–S90, 2014.

[2] M. P. Czech, “Insulin action and resistance in obesity and type 2 diabetes,” Nat. Med., vol. 23, no. 7, pp. 804–814, 2017.

[3] S. E. Inzucchi, R. M. Bergenstal, J. B. Buse, F. J. Holman, J. Rosenstock, and R. R. Henry, “Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, vol. 38, no. 1, pp. 140–149, 2015.

[4] R. E. Soccio, E. R. Chen, and M. A. Lazar, “Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes,” Cell Metab., vol. 20, no. 4, pp. 573–591, 2014.

[5] M. Ahmadian, J. M. Suh, N. Hah, Y. Liddle, B. Atkins, and R. Evans, “PPARγ signaling and metabolism: the good, the bad and the future,” Nat. Med., vol. 19, no. 5, pp. 557–566, 2013.

[6] S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006.

[7] R. Saravanan, N. R. Prasad, and K. V. Pugalendi, “Effect of Andreographis paniculata on blood glucose, oxidative stress, and antihyperlipidemic activities in streptozotocin-induced diabetic rats,” J. Med. Food, vol. 17, no. 1, pp. 139–146, 2014.

[8] Z. Zhang, D. Bian, X. Qin, Y. Li, H. Zhang, and J. Chen, “Andrographolide ameliorates high-fat diet-induced obesity by suppressing lipogenesis and promoting lipolysis,” Molecules, vol. 24, no. 16, p. 2916, 2019.

[9] J. R. Weng, L. Y. Bai, C. F. Chiu, J. L. Hu, S. J. Chiu, and C. Y. Wu, “Andrographolide induces cell cycle arrest and apoptosis in human glioblastoma multiforme cells,” Cancer Lett., vol. 268, no. 2, pp. 268–274, 2008.

[10] A. E. Nugroho, M. Andrie, N. K. Warditiani, E. Siswanto, S. Pramono, and E. Lukitaningsih, “Antidiabetic and antihiperlipidemic effect of A. paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats,” Indian J. Pharmacol., vol. 44, no. 3, pp. 377–381, 2012.

[11] Z. Zhang, L. Gao, Y. Cheng, X. Guo, and H. Sun, “Andrographolide reduces insulin resistance through inhibition of JNK and NF-κB pathways in hepatocytes,” Mol. Cell. Endocrinol., vol. 414, pp. 12–20, 2015.

[12] Y. Zhao, Y. Shen, D. Zheng, J. Zhou, and F. Liu, “Antidiabetic and antinephritic activities of anthocyanin and catechin-rich extracts from purple sweet potato,” Molecules, vol. 23, no. 8, p. 1797, 2018.

[13] Y. C. Koay, M. Z. Asmawi, L. K. Chan, and T. W. Wong, “Pharmacological evaluation of andrographolide and its analogues: an update,” Asian Pac. J. Trop. Med., vol. 9, no. 12, pp. 1196–1204, 2016.

[14] Y. C. Shen, C. F. Chen, and W. F. Chiou, “Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect,” Br. J. Pharmacol., vol. 135, no. 2, pp. 399–406, 2002.

[15] G. F. Zeng, Z. Y. Zhang, L. Lu, D. Q. Xiao, S. H. Zong, and J. M. He, “Protective effects of A. paniculata and andrographolide on cardiovascular and digestive system diseases,” Chin. J. Nat. Med., vol. 12, no. 12, pp. 853–860, 2014.

[16] B. C. Yu, C. K. Chang, C. F. Su, and C. J. Huang, “Decrease of blood glucose by andrographolide in streptozotocin-induced diabetic rats,” Indian J. Med. Res., vol. 131, pp. 368–374, 2009.

[17] B. A. Reyes, N. D. Bautista, N. C. Tanquilut, R. Angeles, and R. B. Casile, “Anti-diabetic potentials of Momordica charantia and A. paniculata and their effects on estrous cyclicity of alloxan-induced diabetic rats,” J. Ethnopharmacol., vol. 105, no. 1–2, pp. 196–200, 2006.

[18] Siswandono, Kimia Medisinal I, 2nd ed., Surabaya, Indonesia: Airlangga University Press, 2016.

[19] S. O. Choi, M. Lee, and Y. H. Kim, “Structure–activity relationship of flavonoids as PPARγ agonists,” Plant Cell Rep., vol. 44, no. 2, pp. 345–359, 2025.
Published
2025-04-30
How to Cite
PRISTIYANTORO, Pristiyantoro; SISWANDONO, Siswandono; MUMPUNI, Esti. Andrographis paniculata Burm. F. in-silico analysis compounds that function as an insulin sensitizer therapy for type 2 diabetes via peroxisome proliferator activated gamma receptors (pparγ) receptor activator. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 23, n. 1, p. 29-38, apr. 2025. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/1651>. Date accessed: 14 june 2025. doi: https://doi.org/10.35814/jifi.v23i1.1651.
Section
Articles