Molecular docking and pharmacokinetic prediction of isoniazid and curcumin compounds against N-acetyltransferase 2 (NAT2) protein

  • Gayatri Simanullang Pharmacy Study Program, Science Faculty, Sumatera Institute of Technology, Lampung, 35365, Indonesia
  • Annisa Maulidia Rahayyu Pharmacy Study Program, Science Faculty, Sumatera Institute of Technology, Lampung, 35365, Indonesia
  • Novrilia Atika Nabila Pharmacy Study Program, Science Faculty, Sumatera Institute of Technology, Lampung, 35365, Indonesia
  • Akmal Hammami Pharmacy Study Program, Science Faculty, Sumatera Institute of Technology, Lampung, 35365, Indonesia
  • Intan Kusuma Wardani Pharmacy Study Program, Science Faculty, Sumatera Institute of Technology, Lampung, 35365, Indonesia

Abstract

NAT2 serves as the key enzyme responsible for metabolizing the INH compound, with its expression and functional activity significantly contributing to the risk of hepatotoxicity. Due to the possible inhibitory role of curcumin on NAT2, it is important to assess its effect on the metabolic processing of INH and to examine the enzyme-related interactions that may occur between drugs. Molecular docking studies demonstrated that curcumin can localize in the hydrophobic pocket and form a strong bond with NAT2. The aim of this study was to predict the potential interaction of the isoniazid and curcumin compounds against NAT2 protein. In this study, NAT2 protein (PDB ID: 2PFR) was used as a receptor. The results obtained showed the binding energies of native ligand, isoniazid, and curcumin were -5.78, -4.47, -8.35 kcal/mol, respectively. The findings of this research suggest that curcumin is capable of suppressing NAT2 activity, thereby affecting the pharmacokinetics of INH. These results may offer insights into minimizing INH-related liver toxicity and enhancing its effectiveness through co-administration with curcumin.

References

[1] M. Meliasari, “Therapy tuberculosis,” Jurnal Medica Utama, vol. 3, no. 1, pp. 1571–1575, 2021.

[2] A. Shintani and M. Irma, “Review: Efek samping obat anti tuberkulosis lini pertama pada anak,” Jurnal Farmaka, vol. 21, no. 2, pp. 197–205, 2023.

[3] Kementerian Kesehatan Republik Indonesia, Pedoman Nasional Pelayanan Kedokteran Tata Laksana Tuberkulosis. Jakarta: Indonesian Ministry of Health, 2020.

[4] A. N. Unissa, S. Sukumar, and L. E. Hanna, “The role of N-acetyltransferases on isoniazid resistance from Mycobacterium tuberculosis and human: An in silico approach,” Tuberculosis and Respiratory Diseases, vol. 80, no. 3, pp. 255–264, 2017, doi:10.4046/trd.2017.80.3.255.

[5] C. Tiara, Fatimawali, A. E. Aaltje, J. Billy, D. Fona, and B. Widdhi, “Molecular docking terhadap senyawa kurkumin dan arturmeron pada tumbuhan kunyit (Curcuma longa Linn.) yang berpotensi menghambat virus corona,” eBiomedik, vol. 9, no. 2, 2021.

[6] H. Rahmawaty, H. Rina, and P. Gunawan, “Molecular docking and pharmacokinetic prediction of potential compounds from Luffa acutangula as antidiabetic candidates,” Pharmaceutical Journal of Indonesia, vol. 20, no. 1, pp. 71–76, 2023.

[7] G. Vandana, P. Tarun, S. Bhanu, C. Shweta, and J. Varun, “Pharmacokinetic and molecular docking studies to design antimalarial compounds targeting Actin I,” International Journal of Health Sciences, vol. 15, no. 16, pp. 4–15, 2023.

[8] D. Utami, “The sulphated polysaccharide compounds from green algae (Ulva lactuca L) as a potential natural anti-inflammatory agent based on molecular docking study targeting cyclooxygenase-2 receptor,” Journal of Pharmaciana, vol. 13, no. 2, pp. 146–158, 2023.

[9] C. Yiqun, A. Bryson, J. Jonathan, P. Paul, E. David, and L. Felcia, “A guide to in silico drug design,” Journal of Pharmaceutics, vol. 15, no. 1, pp. 49, 2023.

[10] S. Meilinda, N. Ellen, D. Cleopatra, N. Refitha, N. Nazwa, N. Elsa, U. Luthfi, and Muchtaridi, “Molecular docking
and toxicity from temulawak rhizome (Curcuma xanthorrhiza Roxb.) against COX-2,” Indonesian Journal of Pharmaceutical Science and Technology, vol. 1, no. 1, pp. 106–115, 2022.

[11] P. L. Beaulieu, “Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection,” Expert Opinion on Therapeutic Patents, vol. 19, no. 2, pp. 145–164, 2009.

[12] L. S. W. F. Amrulloh, N. Harmastuti, A. Prasetiyo, and R. Herowati, “Analysis of molecular docking and dynamics simulation of mahogany (Swietenia macrophylla King) compounds against the PLpro enzyme SARS-CoV-2,” JFIKI, vol. 10, no. 3, pp. 347–359, 2023.

[13] F. Fiona, P. Jesi, R. Tika, Y. Frinces, and R. Irene, “Molecular docking in silico analysis of Mycobacterium tuberculosis bacteria on the leaves of the lemon eucalyptus herbal plant (Corymbia citriodora),” Newton-Maxwell Journal of Physics, vol. 5, no. 1, pp. 19–27, 2024.

[14] G. M. Morris, D. S. Goodsell, M. Pique, W. Lindstrom, and R. Huey, User Guide AutoDock Version 4.2, Updated for Version 4.2.6. La Jolla, CA: The Scripps Research Institute, 2014.

[15] X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui, “Molecular docking: A powerful approach for structure-based drug discovery,” Current Computer-Aided Drug Design, vol. 7, pp. 146–157, 2012, doi: 10.2174/157340911795677602.

[16] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009, doi: 10.1002/jcc.21256.

[17] M. N. Rezki, A. Andika, and R. Rahmawati, “Studi penambatan molekuler senyawa metabolit sekunder buah semangka (Citrullus lanatus) yang berpotensi sebagai anti inflamasi melalui inhibisi COX-2,” Medical Sains: Jurnal Ilmiah Kefarmasian, vol. 7, no. 3, pp. 609–620, 2022.

[18] N. Gültepe, “Scientific argumentation in teaching hydrogen bonding,” Science Education International, vol. 32, no. 3, pp. 197–208, 2021, doi: 10.33828/sei.v32.i3.3.

[19] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to
estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 64, no. 1–3, pp. 4–17, 2012.

[20] S. Suwardi, A. Agus, A. Joanda, B. Daniel, A. Nurul, K. Sigit, and N. Hikmah, “Virtual screening, pharmacokinetic prediction, molecular docking and dynamics approaches in the search for selective and potent natural molecular inhibitors of MAO-B for the treatment of neurodegenerative diseases,” Indonesian Journal of
Chemistry and Environment, vol. 6, no. 2, pp. 95–110, 2023.

[21] S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson, “Computational protein–ligand docking and virtual drug screening with the AutoDock suite,” Nature Protocols, vol. 11, no. 5, pp. 905–919, 2016, doi:10.1038/nprot.2016.051.

[22] T. Nauli, “Penentuan sisi aktif selulase Aspergillus niger dengan docking ligan,” Jurnal Kimia Terapan Indonesia, vol. 16, no. 2, 2014.

[23] I. Irwan, “Simulasi docking senyawa napthoquinones umbi bawang tiwai (Eleutherine americana Merr.) terhadap bakteri Mycobacterium tuberculosis,” Proceeding of Mulawarman Pharmaceuticals Conferences, pp. 2614–4778, 2021, doi: 10.25026/mpc.v13i1.449.

[24] T. M. Syarza, A. Arumsari, and T. M. Fakih, “Studi interaksi senyawa kompleks besi terhadap reseptor Hasap pada Pseudomonas aeruginosa secara in-silico,” Jurnal Kimia Riset, vol. 6, no. 2, 2020, doi: 10.29313/.v6i2.22606.

[25] A. Yuliana, R. Ira, and K. Cindi, “Molecular docking and molecular dynamics simulation using Monascus sp. as a candidate cervical cancer drug,” Journal of Tropical Pharmacy and Chemistry, vol. 7, no. 1, pp. 41–51, 2023, doi: 10.25026/jtpc.v7i1.432.

[26] H. Hasrianti and Arwansyah, “Simulasi molecular docking senyawa kurkumin dan analognya sebagai selective androgen receptor modulators (SARMS) pada kanker prostat,” Jurnal Dinamika, vol. 5, no. 2, pp. 60–75, 2014.

[27] D. D. N. Suparman, Y. Ika, A. Aryadi, N. Rosdiana, H. C. M., and P. Ilhamjaya, “Studi in silico potensi anti kanker senyawa turunan kumarin terhadap protein BCL-2,” Majalah Farmasi dan Farmakologi, vol. 25, no. 2, pp. 84–87, 2021, doi: 10.20956/mff.v25i2.13648.

[28] N. I. Ischak, J. A. M. Weny, A. La Ode, L. Alio, L. K. Akram, and S. D. Sri, “Studi molecular docking dan prediksi ADME senyawa metabolit sekunder tumbuhan obat tradisional Gorontalo terhadap reseptor HER-2 sebagai antikanker payudara,” Jamb. J. Chem., vol. 5, no. 1, pp. 90–103, 2023, doi: 10.34312/jambchem.v5i2.20544.

[29] E. N. Ikhlas, R. R. Lina, and M. Richa, “Analisa in silico senyawa biji lada hitam (Piper nigrum L.) terhadap aktivitas antioksidan,” Jurnal Riset Rumpun Ilmu Kesehatan, vol. 2, no. 2, pp. 301–322, 2023, doi: 10.55606/jurrikes.v2i2.1815.

[30] A. M. Saktiawati, M. G. Sturkenboom, Y. Stienstra, Y. W. Subronto, Sumardi, J. G. Kosterink, T. S. van der Werf, and J. W. Alffenaar, “Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: A randomized cross-over trial,” Journal of Antimicrobial Chemotherapy, vol. 71, no. 3, pp. 703–710, 2016, doi: 10.1093/jac/dkv394.

[31] S. Prasad, A. K. Tyagi, and B. B. Aggarwal, “Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice,” Journal of Korean Cancer Association, vol. 46, no. 1, pp. 2–18, 2014.

[32] J. H. Lin and M. Yamazaki, “Role of P-glycoprotein in pharmacokinetics: Clinical implications,” Clinical Pharmacokinetics, vol. 42, no. 1, pp. 59–98, 2003, doi: 10.2165/00003088-200342010-00003.

[33] H. Glaeser, “Importance of P-glycoprotein for drug-drug interactions,” Handbook of Experimental
Pharmacology, no. 201, pp. 285–297, 2011, doi: 10.1007/978-3-642-14541-4_7.

[34] Y. A. Cho, W. Lee, and J. S. Choi, “Effects of curcumin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats: Possible role of CYP3A4 and P-glycoprotein inhibition by curcumin,” Pharmazie, vol. 67, no. 2, pp. 124–130, 2012.

[35] “Isoniazid,” Tuberculosis (Edinb), vol. 88, no. 2, pp. 112–116, 2008, doi: 10.1016/S1472-9792(08)70011-8.

[36] K. M. Nelson, J. L. Dahlin, J. Bisson, J. Graham, G. F. Pauli, and M. A. Walters, “The essential medicinal chemistry of curcumin,” Journal of Medicinal Chemistry, vol. 60, no. 5, pp. 1620–1637, 2017, doi: 10.1021/acs.jmedchem.6b00975.

[37] A. B. Rowaiye, Y. J. T. Mendes, S. A. Olofinsae, J. B. Oche, O. H. Oladipo, O. A. Okpalefe, and J. O. Ogidigo, “Camptothecin shows better promise than curcumin in the inhibition of the human telomerase: A computational study,” Heliyon, vol. 7, no. 8, 2021, doi: 10.1016/j.heliyon.2021.e07742.

[38] S. P. Rendic, “Metabolism and interactions of ivermectin with human cytochrome P450 enzymes and drug transporters: Possible adverse and toxic effects,” Archives of Toxicology, vol. 95, no. 5, pp. 1535–1546, 2021, doi: 10.1007/s00204-021-03025-z.

[39] W. H. Gaither and V. Gupta, “Drug clearance,” StatPearls, 2023, PMID: 32491690.

[40] S. G. Shin, J. K. Roh, N. S. Lee, J. G. Shin, I. J. Jang, C. W. Park, and H. J. Myung, “Kinetics of isoniazid transfer into cerebrospinal fluid in patients with tuberculous meningitis,” Journal of Korean Medical Science, vol. 5, no. 1, pp. 39–45, 1990, doi: 10.3346/jkms.1990.5.1.39.

[41] H. Xiaoying, L. Guoweli, C. Yuanyuan, and X. Qirning, “Pharmacokinetics and pharmacodynamics of the combination of rhein and curcumin in the treatment of chronic kidney disease in rats,” Frontiers in Pharmacology, vol. 11, no. 1, pp. 1–10, 2020.
Published
2025-11-18
How to Cite
SIMANULLANG, Gayatri et al. Molecular docking and pharmacokinetic prediction of isoniazid and curcumin compounds against N-acetyltransferase 2 (NAT2) protein. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 23, n. 2, p. 305-313, nov. 2025. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/1699>. Date accessed: 08 dec. 2025. doi: https://doi.org/10.35814/jifi.v23i2.1699.
Section
Articles