The Effect of PGV-1, PGV-0 and Curcumin on Protein Involve in G2-M Phase of Cell Cycle and Apoptosis on T47D Breast Cancer Cell Line

  • MUHAMMAD DA'I UNIVERSITAS MUHAMADIYAH SURAKARTA
  • UMAR ANGGARA JENIE UNIVERSITAS GADJAH MADA
  • SUPARDJAN AM UNIVERSITAS GADJAH MADA
  • EDY MEIYANTO UNIVERSITAS GADJAH MADA
  • MASASHI KAWAICHI NARA INSTITUTE SCIENCE AND TECHNOLOGY

Abstract

Previous experiments showed that curcumin analogue (PGV-1) inhibited breast cancer cell (T47D) growth at G2-M phase and induced cell apoptosis. This experiment was conducted to investigate the molecular effect of another curcumin analogue, PGV-0 and curcumin on the cell cycle progression and apoptosis as compared to the PGV-1. F lowcytometric method was conducted to analyze the effect of PGV-1 (2,5 µM), PGV-0 (5,0 µM) and curcumin (10,0 µM) on the cell distribution of various phase of T47D cell cycle. Western blot was also conducted to observe the effect of those compounds on proteins that involved in cell cycle (i.e. p21 and Cdc-Z) and apoptosis (Caspase-3/7/9). The results showed that PGV-1, PGV-0 and curcumin induced hyperploidy phenomenon on T47D cell. PGV-1 inhibited the cell cycle specifically on G2-M phase. Molecular observation showed that PGV-1 and PGV-0 were able to increase the expression of p21 protein and the Cdc-2 proteins, whilst curcumin was able to activate the Cdc-2 protein. The compounds have ability to induce apoptosis on T47D cell via Caspase3/7 activation. In conclusion, PGV-1, PGV-0 and curcumin inhibited the T47D cell cycle progression and induced cell apoptosis.

References

1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003.23(1a):363-98.
2. Reksohadiprodjo MS. et al., 2004, United States Patent, No: Us 6,777,447 B2, Date: Aug 17 2004.
3. Tim Molnas F akultas F armasi UGM. Buku III: Laporan penelitian bidang farmakologi proyek Molnas. Yogyakarta: Fakultas Farmasi UGM; 2001 . F
4. Da’i M. Aktivitas antiproliferatif pentagamavunon-O terhadap sel Raji, sel Hela dan sel Myeloma [thesis]. Yogyakarta: Program Pascasarjana UGM; 2003.
5. Da’i M, Supardjan AM, Meiyanto E, Jenie UA. Geometric isomers and cytotoxic effect on T47D cells of curcumin analogues PGV-0 and PGV-1. Majalah Farmasi Indonesia. 2007.18(l):40-7.
6. Da’i M, Meiyanto E, Supardjan AM, Jenie UA, Kawaichi M. Potensi antiproliperatif analog kurkumin pentagamavunon terhadap sel kanker payudara T47D. Artocarpus. 2007.7(1):]4-20.
7. Da’i M, Jenie UA, Supardjan AM, Kawaichi M, Meiyanto E. T47D cells arrested at G2-M and hyperploidy formation induced by a curcumin’s analogue PGV-1. Biotechnology. 2007.12(2):1005~ 12.
8. Meiyanto E, Melannisa R, Da’i M. PGV-1 menurunkan ekspresi faktor angiogenesis (VEGF dan COX-2) pada sel T47D terinduksi estrogen. Majalah Farmasi Indonesia. 2006.17(1): 1-6.
9. Da’i M, Meiyanto E, Supardjan AM. Efek antiproliferatif pentagamavunon-0 terhadap sel Myeloma. Jurnal Sains Kesehatan. 2004.17(1):1-12.
10. Meiyanto E, Supardjan AM, Da’i M, Agustina D. Efek antiproliperatif pentagamavunon-0 terhadap sel kanker payudara T47D. Jurnal Kedokteran YARSI. 2006.14(1):011-5.
11. Meiyanto E. Kurkumin sebagai obat anti kanker: Menelusuri mekanisme aksinya. Majalah Farmasi Indonesia. 1999.10(4):224-36.
12. Shao Z, Shen Z, Liu C, Sarttippour MR, Go VL, Heber D, Nguyen M. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer. 2000.98:234-40.
13. Meiyanto E. Efek antiproliferatif dan antimetastatik tulang pentagamavunon-O terhadap kanker payudara. Laporan RUT X Kementerian Ristek RI. 2004.
14. Choudhuri T, Pal S, Munna L, Aggarwal BB, Dasa T, Saa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters. 2002.512:334-40.
15. Choudhuri T, Pal S, Das T, Saa G. Curcumin selectively induces apoptosis in deregulated cyclin Dl-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 2005.280:20059-68.
16. Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of Cyclin D1 expression and Cdj4-mediated retinoblastoma protein phosphorylation. Oncogen. 2001.21(57):8852-61.
17. Holy JM. Curcumin disrupts mitotic spindle structure and induces micronucleation In MCF-7 Breast Cancer Cells. Mutat Res. 2002.518271-84.
18. Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio M, Saya H. Mechanism of hyperploidy cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogen. 2001 .20:420-9.
19. Wosikowski J, Regis JT, Robey RW, Alvarez M, Buters JTM, Gudas JM, Bates SE. Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Different. 1995.6:1395-1403.
20. Long BH, Fairchild CR. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res. 1994.54:4355-61.
21. Sorger PK, Dobles M, Tournebize R, Hyman AA. Coupling Cell Division and Cell Death to Microtubule Dynamics, Curr Opin Cell Biol. 1997. 9: 807-14
22. Okada H, Mak TW. Pathways of apoptosis and non apoptotic death in tumour cells. Cancer. 2004.4:592-603.
23. Mueller PR, Coleman TR, Kumagai A, Dunphy WG, Mytl: A membrane-associated inhibitory kinase that phosphorylates Cdc-2 on tyrosine-15. Science. 1995.270:86-90.
24. Liu F, Stanton JJ, Wu Z, Piwnica-Worms H. The human Mytl kinase preferentially phosphorylates Cdc2 on threonine 14. Mol Cell Biol. 1997.17:517-83.
25. Parker LL, Piwnica-Worms H. Inactivation of the p34cdc2-Cyclin B complex by the human weel tyrosine kinase. Science. 1992.257:1955-7.
26. Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW. Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell. 1991.67:2207-11.
27. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005.23:9408-21
28. Polyak K, Lee MH, Erdument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Clonning of p27kip1, a Cyclin dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994.78:56-66.
29. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai L, Zhang P, Dobtowolski S, Bai C, ConnelCrowley L, Swindell E, Fox MP, Wei N. Inhibition of cyclin dependent kinases by p21. Mol Biol Cell.1995.6:387-400.
30. Chibazakura T, Mcgrew SG, Cooper JA, Yoshikawa, Roberts JM. Regulation of Cyclin-dependent kinase activity during mitotic exit and maintenance of genome stability by p21, p27 and p107. PNAS. 2004. 101: 4465-70.
31. Notton E, Diffley FX. Cdk Inactivation is the only essential fuction of the Apc/C and the mitotic exit network proteins for origin resetting during nitosis. Mol. Cell. 2000.5:85-95.
32. Cryns V, Yuan J. Protease to die. Genes Dev. 1998.12: 1551-70.
33. Herr I, Debatin KM. Celluler stress response and apoptosisin cancer therapy. Blood. 2001.98:2603-19.
34. O’connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Frien S, Fomace AJ, Kihn KW. Characterization of the p53 tumor supressor pathway in cell lines of the National Cancer Institute anticancer drug screen correlation with the growth inhibitory potency of 123 anticancer agents. Cancer Res. 1997.57:4285-300.
35. Schafer JM, Lee ES, O’regan RM, Yao K, Jordan VC. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin Cancer Res. 2000.6:4373-80.
36. Lacroix M, Toillon RA, Leclercq G. p53 and breast cancer, An update. Endocrine-Related Cancer. 2006. 13:293-325.
37. Lu X, Errington J, Curtin NJ, Lunec J, Newell DR. The impact of p53 status on cellular sensitivity to antifolate drugs. Clin Cancer Res. 2001.7:2114-23.
38. Yu Q, Rose JH, Zhang H. Ucn-01 inhibits p53 upregulation and abrogates gamma radiation-induces G2-M checkpoint independently of p53 by targeting both the checkpoint kinases, Chk2 and Chk1. Cancer Res. 2002.62:5743-8.
39. Loo GV, Saelens X, Van Gurp M, Macfartana M, Martin SJ, Vandenabeele P. The role of mithocondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death And Differentiation. 2002.9:1031-42.
40. Wang TH, Popp DM, Wang HS, Saitoh M, Mural 1G, Henley DC. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both C-Jun N terminal kinase (JNK)-dependent and independent pathways in ovarian cancer cells. J Biol Chem. l999.274:8208-16.
41. Nitta M, Tsuiki H, Arima Y, Harada Kel, Nishizaki T, Sasaki K, Tatsuyuki M, Mimori T, Ushio Y, Saya H. Hyperploidy induced by drugs that inhibit formation of microtubule promotes chromosome instability. Genes Cells. 2002.7:151-62.
42. Wang TH, Wang HS, Soong YK. Paclitaxel induced cell death: Where the cell cycle and apoptosis come together. Cancer. 2002.11:2619-28.
43. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancer by Cyclin D1 ablation. Nature. 2001.411:1017-21.
44. Stewart ZA, Tang LJ, Pietenpol JA. Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor and cell-specific manner. Oncogen. 2001.20:113-21.
45. Mantel C, Braunn SE, Reid S. p21(Cip1/Waf1) deficiency caused deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood. 1999.93:1390-8.
46. Blajeski AL, Phan Vy A, Kottke TJ, Kauffmann SH. G1 and G2 cell cycle arrest following microtubule depolymeriztion in human breast cancer cells. JCI. 2002.110291-9.
47. Lin HI, Chang YF, Liu TY, Wu CW, Chi CW. Submocromolar paclitaxel induces apoptosis in human gastric cancer cells at early G1 phase. Anticancer Res. 1998.18:3443-9.
48. El-Hajouji A, Cunha M, Kirsch-Volders M. Spindle poison can induce polyploidy by mitotic slippage and micronucleates in the cytokineses block assay. Mutagenesis. 1998.13:193-8.
49. Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? M01 Cane Ther. 2003.2:573-80.
50. Srivastava RK, Srivastava AR., Korsmeyer SI, Nestrova M, Cho-Chung YS, Longo DI. Involvement of microtubules in the regulation of Bc1-2 phosphorylation and apoptosis through C-Amp-dependent protein kinase. Mol Cell Biol. 1998.18:3509-17.
51. Mohan J, Gandhi AA, Bhavyam BC, Rashmi R, Karunagaran D, Indu R, Santhoskumar R. Caspase-2 triggers Bax-Bak-dependent and independent cell death in colon cancer cells treated with resveratrol. J Biol Chem. 2006.281:17599-611.
52. Blagosklonny MV, Fojo T. Molecular effects of paclitaxel: Myths and reality (A critical review). Int J Can. 1999.83:151-6.
53. Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T. Association between mitotic spindle checkpoint impairment and suscepibility to the induction of apoptosis by antimicrotubule agent in human lung cancer. American J Pathol. 2003.16321109-16.
54. Scatena CD, Stewart ZA, Mays D, Tang LJ, Keefer CJ, Leach SD, Petenpol JA. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and taxol induced growth arrest. J Biol Chem. 1999.273: 30777-84.
55. Da’I M, Supardjan AM, Jenie UA, Kawaichi M Pentagamavunon-l menghambat siklus sel T47D terinduksi Caspase inhibitor Z-VAD-ka pada fase G2-M. Jumal Farmasi Indonesia. 2011.5(4):180-7.
56. Ramondetta L, Mills GB, Burke TW, Wolf JK Adenovirus mediated expression of p53 and p21 in a papillary serous endometrial carcinoma cell line (Spec-2) results in both growth inhibition and apoptotic cell death: Potential application of gene therapy to endometrial cancer. Clin Cancer Res. 2000.6:278-84.
57. Wu Q, Kirschmeier P, Hockenberry T, Yang TY. Brassard DL, Wang L, Mclanahan T, Black S. Rizzi G, Musco ML, Miza A, Liu S. Trancriptional regulation during p21waf1/Cip1-induced apoptosis in human ovarian cancer cells. J Biol Chem. 2001.227: 36329-37.
58. Yang HL, Pan JX, Sun L, Yeung SCJ. p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2001 .88:763-72.
59. Kamradt MC, Chen F, Cryns VL. The small heat shock protein Ab-crystallin negatively regulates cytochrome C and Caspase-8 dependent activation of Caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem. 2001.276:16059-63.
60. Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of Caspase-2. Mol Canc Ther. 2007.6:752-61.
61. Ho PK, Hawkins CJ. Mammalian initiator apoptosis caspases. FEBSJ. 2005. 272: 5436-53.
62. Zhivotovsky B, Orrenids S. Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun. 2005.331 :859-67.
Published
2012-09-30
How to Cite
DA'I, MUHAMMAD et al. The Effect of PGV-1, PGV-0 and Curcumin on Protein Involve in G2-M Phase of Cell Cycle and Apoptosis on T47D Breast Cancer Cell Line. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 10, n. 2, p. 99-110, sep. 2012. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/255>. Date accessed: 19 oct. 2021.
Section
Articles