Allele and Genotype Frequency of Sulfonylurea Receptor-1 (Sur-1) Gene in Type 2 Diabetes among Javanese Population
Abstract
Type 2 diabetes is a metabolic disorder that results from insulin secretion disorder, insulin action or both. SUR1 gene is part of KATP channel in the pancreatic β-cell that plays an essential role related with cell membrane depolarization and glucose-induced insulin secretion. The polymorphism p.R1273R of SUR1 gene, causes KATP channel failed to give feedback to metabolic activation, failed of closing KATP channel, reduces insulin secretion, impaired glucose tolerance, and causes type 2 diabetes. This is case-control study using 80 subjects consist of 40 subjects with type 2 diabetes as case and 40 subjects of non diabetes as control. The SUR1 gene p.R1273R polymorphism genotyping were detected by PCRRFLP. Data were statistically analyzed by t-test, Chi-Square. The genotype frequency distribution of p.R1273R SUR1 gene in type 2 diabetes subjects were 90% of GG genotype and 10% of AG genotype. In non diabetes subjects, GG genotype was 87,5% and AG genotype was 12.5%. In type 2 diabetes and non diabetes subjects the AA genotype was not observed. The allele frequency distribution in type 2 diabetes subjects G allele was 95% and A allele was 5%, in non diabetes subjects G allele was 93.75% and A allele was 6.25%. All the genotype and allele frequency distributions in type 2 diabetes and non diabetes subjects were not statistically significant (p = .723 genotype frequency; p = 0.732 allel frequency).
References
2. Wild S, Roglic G, Green A, Sicre R, King H. Global Prevalence of Diabetes: Estimates for the year 2000 andprojections for 2030. Diabetes Care. 2004. 27: 1047-53.
3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005. 28 (Suppl 1): S37-S42.
4. Amos A, McCarty D, Zimmet P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabetic Med. 1997. 14 (Suppl 5): S1-S85.
5. American Diabetes Association. Diagnosis and Classification of Diabetes. Diabetes Care. 2007. 30 (Suppl 1): S42-S47.
6. De Fronzo. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev, 1997. 5: 177-269.
7. Velho G and Froguel P. The genetic determinants of NIDDM: strategies and recent results, Diabetes Metab. 1997. 23: 7-17.
8. Radha V, Vimaleswaran KS, Deepa R, Mohan V. The Genetics of diabetes mellitus, Indian J Med Res, 2003. 117: 225-38.
9. Permutt MA, Wasson J, Cox N. Genetic Epidemiology of Diabetes. J. Clin. Invest. 2005. 115: 1431-1439.
10. Goksel DL, Fischbach K, Duggirala R, Mitchell BD,Aguilar-Bryan L, Blangero J, Stern MP, O’Connell P. Variant in sulfonylurea receptor-1 gene is associated with high insulin concentrations in non-diabetic Mexican Americans: SUR-1 gene variant and hyperinsulinemia. Hum Genet. 1998. 103: 280-5.
11. Reis AF, Ye WZ, Dubois-Laforgue D, Bellane-Chantelot C, Timsit J, Velho G. Association of a variant in exon 31 of the sulfonylurea receptor 1 (SUR1) gene with type
2 diabetes mellitus in French Caucasian. Hum Genet. 2000. 107: 138-44.
12. Rissanen J, Markkanen A, Karkkainen P, Pihlajamaki J, Kekalainen P, Mykkanen L, Kuusisto J, Karhapaa P, Niskanen L, Laakso M. Sulfonylurea receptor-1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care. 2000. 23: 70-3.
13. Laukkanen O, Pihlahamaki J, Lindstrom J, Eriksson J,Valle TT, Hamalainen H, Hanne-Parikka P, Keinanen- Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M, Finnish Diebetes Prevention Study Group. Polymorphism of the SUR1 (ABCC8) and Kir 6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes, The Finish Diabetes Prevention Study. J. Clin Endocrinol Metab. 2004. 89: 6286-90.
14. Yokoi N, Kanamori M, Horikawa Y, Takeda J, SankeT, Furuta H, Nanjo K, Mori H, Kasuga M, Hara K, Kadowaki T, Tanizawa Y, Oka Y, Iwami Y, Ohgawara H, Yamada Y, Seino Y, Yano H, Cox NJ, Seino S. Association studies of variants in the gene involved in pancreatic β-cell function in type 2 diabetes in Japanese subjects. Diabetes. 2008. 55: 2379-86.
15. Christiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV. The KCNJ11 E23K and ABCC8 exon 31 variants contribute to susceptibility to type 2 diabetes, glucose tolerance and altered insulin secretion in a Russian population. Diabetes India. 2008. 185-91.
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.