A Structure-Activity Study of Antioxidant Compounds from the Stem Bark of Kandis Gaj ah (Garcinia griffithii T. Anders)
Abstract
Four xanthones and two benzophenones from the stem bark of kandis gajah (Garcinia griffithii) by extraction and chromatographic methods have been isolated. The six compounds were determined as: 1,7-dihydroxyxanthone (1), 1,6,7-trihydroxyxanthone (2), 1,6-dihydroxy-3-methoxy-4,7-di-(3-methylbut-2-enyl)xanthone (3), 1,5-dihydroxy-3,6-di-methoxy-2,7-di-(-3-methylbut-2-enyl)xanthone (4), guttipherone I (5), and isoxanthochymol (6). All of the isolated compounds were submitted to antioxidant activity assay using three methods: (i) free radical scavenging method, (ii) xanthine-xanthine oxidase (XO) method, and (iii) nitroblue tetrazolium xanthine oxidase (NBT/ XO). Guttipherone I (5) and isoxanthochymol (6) have strong antioxidant activity (IC50 ≤10.2 µg/mL), 1,6,7-trihydroxyxanthone (2) and 1,6-dihydroxy-3-methoxy-4,7-di-(3-methylbut-2-enyl)xanthone (3) as active compounds (IC50 ≤ 100 µg/mL), while 1,7-dihydroxyxanthone (1) and 1,5-dihydroxy-3,6-dimethoxy-2,7-di-(3-methylbut-2-enyl)xanthone (4) were inactive (IC50 > 100 µg/mL). Base on the data, antioxidant activity of isolated compounds was inhuenced by dihydroxyl groups at ortho position, number of hydroxyl group, and hydroxyl group at para position to C carbonyl at heterocyclic.
References
2. Chiang YM, Kuo YH, Oota S, and Fukuyama Y. Xanthones and benzophenones from the stems of Garcinia multiilora. J Nat Prod. 2003. 66: 1070-3.
3. Silva FAM, Borges F, Guimaraes C, Lima JLF, Matos C, Reis S. Phenolic Acids and Derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J Agri Food Chem. 2000. 48: 2122-6.
4. Ito C, Itoigawa M, Takakura T, Ruangrungsi N, Enjo F, Tokuda H, et al. Chemical constituens of Garcinia fusca: structure elucidation of eight new xanthones and their cancer chemopreventive activity. J Nat Prod. 2003. 66:200-205.
5. Hay AE, Auinond MC, Mallet S, Dumonted V, Litaudon M, Rondeau D, et al. Antioxidant xanthones from Garcinia vieillardi. J Nat Prod. 2004. 67:707-9.
6. Terashima K, Takaya Y, Niwa M. Powerful antioxidative agents based on garcinoic acid from Garcinia kola. Bioorganic and Med Chem. 2002. 10: 1619-25.
7. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidant: chemistry, metabolism and structureactivity relationships. J Nutri Biochem. 2002. 13: 572-84.
8. Yamaguchi F, Saito M, Ariga T, Yoshimura Y, Nakazawa H. Free radical scavenging activity and antiulcer activity ofgarcinol from Garcinia indica fruit rind. JAgri Food Chem. 2000. 48:2320-5.
9. Selvi AT, Joseph GS, Jayaprakasha GK. Inhibition of growth and aflatoxin production in Aspergillus flavus by Garcinia indica extract and its antioxidant activity. Food Microbio. 2003. 20:455-60.
10. Stojanovic S, Sprinz H, Brede O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its anologues in the radical liposome oxidation. Arch Biochem and Biophys. 2001. 311(1):78-89.
11. Fukumoto LR and Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agri Food Chem. 2000. 48:3597-604.
12. Elfita, Supriyatna S, Bahti HH, Dachriyanus. Diprenylated xanthone from the stem bark of Garcinia griffithii. Indo J Chem. 2008. 8(1):97-100.
13. Elfita E, Muharni M, Madyawati L, Darwati D, Ari W, Supriyatna S, et al. Antiplasmodial and other constituents from four Indonesian Garcinia Sp. Phytochemistry. 2009. 70:907-12.
14. Elfita, Supriyatna S, Bahti HH, Dachriyanus. Chemical constituen from the stem bark of Kandis Gajah (Garcinia griffithii T. Anders) and their antioxidant activity. International Seminar on The Role of Chemistry in Industry and Environment, held in UNAND, Padang, 2007.
15. McCune LM and Johns T. Antioxidant Activity in Medicinal Plants Associated with the Symptoms of Diabetes Mellitus Used by the Indigenous Peoples of the North American Boreal Forest. Journal of Ethnopharmacology. 2002. 82: 197-205.
16. Eltita. Santon dan Benzofenon dari Tumbuhan Kandis Gajah (Garcinia griffithii T. Anders) dan Aktivitas Antioksidannya (Disertasi). Bandung: Jurusan Ilmu Kimia Universitas Padjadjaran; 2008. 52-53.
17. Deachathai S, Mahabusaracam W, Phongpacichit S, Taylor WC, Zhang YJ, and Yang CR. Phenolic Compound from the Flowers of Garcinia dulcis. Phytochemistry. 2006. 67: 464-469.
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.