Ensemble Protein-Ligand Interaction Fingerprints in Construction and Validation of Virtual Screening Protocol Targeting C-X-C Chemokine Receptor Type 4

  • ENADE PERDANA ISTYASTONO UNIVERSITAS SANATA DHARMA
  • MUHAMMAD RADIFAR Laboratorium Kimia Komputasi

Abstract

Structure-Based Virtual Screening (SBVS) protocols targeting C-X-C chemokine receptor type 4 (CXCR4) have been constructed by employing PLANTS 1.2 to perform molecular docking simulations and PyPLIF 0.1.1 to identify Protein-Ligand Interaction Fingerprint (PLIF). By using ChemPLP score from PLANTS 1.2 and Tc-PLIF from PyPLIF 0.1.1 to select best pose in the retrospective SBVS showed Enrichment Factor (EF) values of less than the EF value of the reference SBVS (17.5). Nevertheless, the retrospective SBVS campaigns have also resulted in PLIF bitstrings for all poses resulted from the molecular docking simulations.In this article, binary Quantitative Structure-Activity Relationship (QSAR) analysis employing new predictors ensemble PLIF resulted from the retrospective SBVS campaings, instead of using PLIF bitsrings from the best pose only, are presented. The ensemble PLIF as predictors were calculated by taking into account all poses with ChemPLP score lower than a certain ChemPLP score as the predefi ned cutoff , and subsequently for every compound the percentage of “on” interactions was calculated for every PLIF bitstring. The predefi ned cutoff was selected by performing systematic trials to obtain a ChemPLP score as the cutoff with the highest F-score and Matthews correlation coeffi cient (MCC) value.The results showed that the F-score and MCC values could reach 0.58 and 0.61, respectively with EF value of 323.47, which was much better than the EF value of the reference SBVS protocol.

References

1. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010. 330(6007):1066–71.

2. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R. Status of GPCR modeling and docking as refl ected by community-wide GPCR Dock 2010 assessment. Structure. 2011. 19(8):1108–26.

3. Kufareva I, Katritch V, Stevens RC, Abagyan R. Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure . 2014. 22(8):1120–39.

4. Roumen L, Scholten DJ, De Kruijf P, De Esch IJP, Leurs R, De Graaf C. C(X)CR in silico: Computeraided prediction of chemokine receptor-ligand interactions. Drug Discov Today Technol. 2012. 9(4):e281–91.

5. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J Med Chem. 2012. 55(14):6582–94.

6. Marcou G, Rognan D. Optimizing fragment and scaffold docking by use of molecular interaction fi ngerprints. J Chem Inf Model. 2007. 47(1):195–207.

7. de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, et al. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. J Med Chem. 2011. 54(23):8195–206.

8. Istyastono EP, Kooistra AJ, Vischer H, Kuijer M, Roumen L, Nijmeijer S, et al. Structure-based virtual screening for fragment-like ligands of the G proteincoupled histamine H4 receptor. Med Chem Commun. 2015. 6:1003–17.

9. Salentin S, Haupt VJ, Daminelli S, Schroeder M. Polypharmacology rescored: Protein-ligand interaction profi les for remote binding site similarity assessment. Prog Biophys Mol Biol. 2014. 116(2- 3):174–86.

10. Radifar M, Yuniarti N, Istyastono EP. PyPLIF: Pythonbased protein-ligand interaction fingerprinting. Bioinformation. 2013. 9(6):325–8.

11. Radifar M, Yuniarti N, Istyastono EP. PyPLIFassisted redocking indomethacin-(R)-alpha-ethylethanolamide into cyclooxygenase-1. Indones J Chem. 2013. 13(3):283–6.

12. Anita Y, Radifar M, Kardono L, Hanafi M, Istyastono EP. Structure-based design of eugenol analogs as potential estrogen receptor antagonists. Bioinformation. 2012 . 8(19):901–6.

13. Anita Y, Sundowo A, Dewi NLP, Filailla E, Mulyani H, Risdian C, et al. Biotransformation of eugenol to dehydroeugenol catalyzed by Brassica juncea Peroxidase and its cytotoxicity activities. Procedia Chem. 2015. 16(2015):265–71.

14. Istyastono EP, Riswanto FDO, Yuliani SH. Computeraided drug repurposing: a cyclooxygenase-2 inhibitor celecoxib as a ligand for estrogen receptor alpha. Indones J Chem. 2015. 15(3):274–80.

15. Setiawati A, Riswanto FDO, Yuliani SH, Istyastono EP. Retrospective validation of a structure-based virtual screening protocol to identify ligands for estrogen receptor alpha and its application to identify the alpha-mangostin binding pose. Indo J Chem. 2014. 14(2):103–8.

16. Istyastono EP. Employing recursive partition and regression tree method to increase the quality of structure-based virtual screening in the estrogen receptor alpha ligands identifi cation. Asian J Pharm Clin Res. 2015. 8(6):21–4.

17. Therneau T, Atkinson B, Ripley B. rpart: Recursive partitioning and regression Trees. R package version 4.1-9. 2015. diambil dari: http://CRAN.R – project. org/package=rpart.

18. Setyaningsih D, Radifar M, Murti YB, Istyastono EP. Construction of in silico structure-based screening tools to study the oxidative metabolites formation of curcumin by human cytochrome 450 3A4. Indones J Pharm. 2013. 24(2):75–85.

19. Istyastono EP, Setyaningsih D. Construction and retrospective validation of structure-based virtual screening protocols to identify potent ligands for human adrenergic beta-2 receptor. Indones J Pharm. 2015. 26(1):20–8.

20. Istyastono EP, Nurrochmad A, Yuniarti N. Structurebased virtual screening campaigns on curcuminoids as potent ligands for histone deacetylase-2. Orient J Chem. 2016. 32(1):275–82.

21. Cannon EO, Amini A, Bender A, Sternberg MJE, Muggleton SH, Glen RC, et al. Support vector inductive logic programming outperforms the naive Bayes classifi er and inductive logic programming for the classifi cation of bioactive chemical compounds. J Comput Aided Mol Des. 2007. 21:269–80.

22. Desaphy J, Raimbaud E, Ducrot P, Rognan D. Encoding protein-ligand interaction patterns in fi ngerprints and graphs. J Chem Inf Model. 2013. 53(3):623–37.

23. ten Brink T, Exner TE. Influence of protonation, tautomeric, and stereoisomeric states on proteinligand docking results. J Chem Inf Model. 2009. 49(6):1535–46.

24. Korb O, Stützle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model. 2009. 49(1):84–96.

25. Korb O, Stützle T, Exner TE. An ant colony optimization approach to flexible protein–ligand docking. Proc IEEE Swarm Intell Symp. 2007. 1(2):115–34.

26. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011. 3(1):33–47.

27. R Core Team. R: A Language and Environment for Statistical Computing. Vienna. 2015. diambil dari: http://www.r-project.org/

28. Vroling B, Sanders M, Baakman C, Borrmann A, Verhoeven S, Klomp J, et al. GPCRdb: information system for G protein-coupled receptors. Nucleic Acids Res. 2011.39(Suppl. 1):D309–19.

29. Andrews SP, Brown GA, Christopher JA. Structurebased and fragment-based GPCR drug discovery. ChemMedChem. 20149(2):256–75.
Published
2017-04-30
How to Cite
ISTYASTONO, ENADE PERDANA; RADIFAR, MUHAMMAD. Ensemble Protein-Ligand Interaction Fingerprints in Construction and Validation of Virtual Screening Protocol Targeting C-X-C Chemokine Receptor Type 4. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 15, n. 1, p. 82-88, apr. 2017. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/460>. Date accessed: 22 dec. 2024.
Section
Articles