The In Vitro and In Silico Study of n’-benzoylisonicotinohydrazide as Antituberculosis Candidate
Abstract
There have been in silico and in vitro studies of N-Benzoylisonicotinohydrazide derivatives as antituberculosis candidates. The aims of this research were determined that the N'-benzoylisonicotinohydrazide derivatives could inhibit the activity of gram-positive, gram-negative and Mycobacterium tuberculosis, as well as having good interactions with Enoyl-Acyl Carrier Protein Reductase from Mycobacterium Tuberculosis. From the in vitro test it was found that the N'-benzoylisonicotinohydrazide compound had a Minimum Inhibitor Concentration (MIC) of 0.33 µg / ml against the Basillus subtilis, while the Minimum Inhibitor Concentration (MIC) of N '- (2-chlorobenzoyl) isonicotinohydrazide against Mycobacterium tuberculosis (H37Rv) was 3.125 µg / ml. From the in silico study, it was found that the binding affinity value between N '- (2-chlorobenzoyl) isonicotinohydrazide enzyme Enoyl-Acyl Carrier Protein Reductase (2X23) had the smallest binding affinity so that it could be predicted that it had a stable interaction than other compounds so that the N '- (2-chlorobenzoyl) isonicotinohydrazide could be used as a more potent antituberculosis candidate.
References
2. Alea GV, Lagua FMG, Caparas MNS. Synthesis and Characterization of Methyl-2-hydroxy-5- {( 1 ) -1- [ 2- zinylidene ] butyl } benzoate , a New Isonicotinoyl hydrazone Derivative of Methyl Salicylate. DLSU Research Congress Manila. 2014.1-5.
3. Cassano R, Trombino S, Ferrarelli T, Cavalcanti P, Giraldi C, Lai F, et al. Synthesis, characterization and in-vitro antitubercular activity of isoniazid-gelatin conjugate. Journal of Pharmacy and Pharmacology. 2012. 64(5). 712–718. doi: 10.1111/j.2042-7158.2012.01461.x.
4. Coelho TS, Cantos JB, Bispo MLF, Gonçalves RSB, Lima CHS, da Silva PEA, et al. In vitro anti-mycobacterial activity of (E)-N’-(monosubstituted-benzylidene) isonicotinohydrazide derivatives against isoniazidresistant strains. Infectious Disease Reports. 2012. 4(1), 49–51. doi: 10.4081/idr.2012.e13.
5. Hearn M. and Cynamon M. In Vitro and In Vivo Activities of Acylated Derivatives of Isoniazid Against Mycobacterium Tuberculosis. Drug Design and Discovery. 2003. 18(4), 103–108. doi: 10.1080/10559610390450705.
6. Ruswanto, Mardianingrum R, Nofianti T, and Rahayuningsih N. Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-tuberculosis Candidates. Mal. J. Fund. Appl. Sci. 2019. 15(3). 367-371
7. Tiruveedhula., et al. Design and synthesis of novel antimicrobials with activity against Gram-positive bacteria and mycobacterial species, including M. Tuberculosis. 2013. Bioorganic & Medicinal Chemistry. 21. 7830–7840.
8. Zaenab, dkk. Uji antibakteri siwak (Salvadora persica Linn.) terhadap Streptococcus mutans (ATC31987) dan Bacteroides melaninogenicus. 2004. Makara Kesehatan, 8(2):h.37-40.[diakses 16 Mei 2014]. http://journal.ui.ac.id/health/article/ download/287/283.
9. Purnamasari., et al. Perbandingan Metode Proporsi dengan Metode Resazurin Microtiter Assay (Rema) untuk Deteksi Mycobacterium tuberculosis yang Resisten Terhadap Rifampisin. Jurnal Medula. 2015. Vol. 2 No. 2 April 2015.
10. Choy YB and Prausnit, MR. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharmaceutical Research. 2011. 28(5). 943–948. https://doi.org/10.1007/s11095-010-0292-6.
11. Athar M, Lone MY, Jha PC. First protein drug target’s appraisal of lead-likeness descriptors to unfold the intervening chemical space. Journal of Molecular Graphics and Modelling. 2017. 72: 272–282. https://doi.org/10.1016/j.jmgm.2016.12.019.
12. Ruswanto R, Nofianti T, Mardianingrum R, Lestari T, Sepriliani A. Desain dan Studi In Silico Senyawa Turunan Kuwanon-H sebagai Kandidat Obat Anti HIV Design and In Silico Study of Kuwanon-H as Anti HIV Drug Candidate. Jurnal Kimia Valensi. 2018. 4(1): 57–66.
13. Ruswanto, Mardianingrum R, Novitriani K. Sintesis Dan Studi in Silico Senyawa 3-NitroN’-[( Pyridin-4-YI) Carbonyl] Benzohydrazide Sebagai Kandidat Antituberkulosis. Jurnal Chimica et Natura Acta. 2015. 3(2): 54-61.
14. Trott O, dan Olson AJ. Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry. 2009. ol. 31, No. 2.
15. Herlina T, Mardianingrum R, Gaffar S, Supratman U. Isoquinoline Alkaloids from Erythrinapoeppigiana (Leguminosae) and Cytotoxic Activity Against Breast Cancer Cells Line MCF-7 In Silico. J. Phys.: Conf. Ser. 821. 2017. doi:10.1088/1742-6596/812/1/012091.
16. Ruswanto R, Mardianingrum R, Lestari T, Nofianti T, Tuslinah L, dan Nurmalik D. In silico study of the active compounds in bitter melon ( Momordica charantia L ) as antidiabetic medication. Pharmaciana. 2018.8(2). 176–194.
17. Ruswanto, Richa M, Tita N, Tresna L. Molecular Docking of 1-Benzoyl-3-Methylthiourea as Anti Cancer Candidate and Its Absorption, Distribution, and Toxicity Prediction. Journal of Pharmaceutical Sciences and Research. 2017. 9(5): 680–684.
18. Muharni, Fitrya., dan Sofa F. Uji Aktivitas Antibakteri Ekstrak Etanol Tanaman Obat Suku Musi di Kabupaten Musi Banyuasin, Sumatera Selatan. Jurnal Kefarmasian Indonesia. 2017. 7(2). 127-135.
19. Prayoga. Perbandingan Efek Ekstrak Daun Sirih Hijau (Piper betle L.) Dengan Metode Difusi Disk Dan
Sumuran Terhadap Pertumbuhan Bakteri Stapylococcus aurues [Skripsi]. Jakarta : Fakultas Kedokteran Dan Ilmu Kesehatan Prodi Studi Farmasi UIN Syarif Hidayatullah. 2013.
20. Auliyah, P. Efek Antibakteri Ekstrak Daun Kelor (Moringa oleifera) Terhadap Pertumbuhan Bakteri Salmonella thypi [Skripsi]. Universitas Taduloka. 2016.
21. Mambang., Rosidah., dan Dwi Suryanto. Aktivitas Antibakteri Ekstrak Tempe Terhadap Bakteri Basillus subtilis Dan Staphylococcus aureus. Jurnal Teknologi dan Industri Pangan. 2014.Vol. 25 No. 1.
22. Syahputra, Gita. Resazurin Si Indikator Aktivitas Sel. BioTrends. 2015. Vol.6 No.2.
23. Setiabudy, R. Farmakologi dan Terapi Edisi 6. Jakarta : FKUI. 2016.
24. Ruswanto, Mardianingrum R, Novitriani K. Sintesis Dan Studi in Silico Senyawa 3-NitroN’-[( Pyridin-4-YI) Carbonyl] Benzohydrazide Sebagai
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.