Preparation and Characterization of Fluconazole- Resorcinol Co-crystal
Abstract
Fluconazole (FLU), an oral antifungal widely used in the treatment of vaginitis and
candidiasis, is known to have low bioavailability due to its low solubility. The purpose of this study
was to prepare and characterize co-crystal fl uconazole-resoscinol (FLU-RES). The preparation of
co-crystal was performed by grinding together the equimolar mixture of FLU-RES which is dripped
with a few ethanol. Powder X-ray diff raction, diff erential scanning calorimetry (DSC), and polarized
microscopy methods were performed to characterize the formation of FLU-RES co-crystal. Relevant
physicochemical properties include solubility tests in water and dissolution tests in pH 1.2; 4.5 and
6.8 buff er solution. The powder X-ray diff ractogram of FLU-RES milled result showed the presence
of new peaks and loss of the main peaks of FLU and RES. The characterization of grinding result by
DSC and polarized microscopy methods also showed the co-crystal formation between FLU and RES.
The solubility of FLU-RES co-crystal in water is solubility two folds more than pure FLU, while its
dissolution rate is 1.67-1.72 times faster than pure FLU.
References
Trappitt G. Pharmaceutical cocrystals: An overview.
Vol. 419, International Journal of Pharmaceutics.
2011. 1–11.
2. Trask A V., Motherwell WDS, Jones W. Physical stability
enhancement of theophylline via cocrystallization. Int
J Pharm. 2006;320(1–2):114–23.
3. Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB.
Improving the solubility and bioavailability of
apixaban via apixaban-oxalic acid cocrystal. Cryst
Growth Des. 2016;16(5):2923–30.
4. Shaikh R, Singh R, Walker GM, Croker DM.
Pharmaceutical Cocrystal Drug Products : An Outlook
on Product Development. Trends Pharmacol Sci. 2018.
1–16.
5. Vishweshwar P, Mcmahon JJA, Bis J a., Zaworotko
MJ. Pharmaceutical co-crystals. J Pharm Sci.
2006;95(3):499–516.
6. Kastelic J, Lah N, Kikelj D, Leban I. A 1:1 cocrystal of
fluconazole with salicylic acid. Acta Crystallogr Sect
C Cryst Struct Commun. 2011;67(9):370–2.
7. Kastelic J, Hodnik Ž, Šket P, Plavec J, Lah N, Leban I,
et al. Fluconazole cocrystals with dicarboxylic acids.
Cryst Growth Des. 2010;10(11):4943–53.
8. Dayo Owoyemi BC, Da Silva CCP, Souza MS, Diniz
LF, Ellena J, Carneiro RL. Fluconazole: Synthesis and
structural characterization of four new pharmaceutical
co-crystal forms. Cryst Growth Des. 2019;19(2):648–
57.
9. Sanphui P, Goud NR, Khandavilli UBR, Nangia A.
Fast dissolving curcumin cocrystals. Cryst Growth
Des. 2011;11(9):4135–45.
10. Gangavaram S, Raghavender S, Sanphui P, Pal S,
Manjunatha SG, Nambiar S, et al. Polymorphs and
cocrystals of nalidixic acid. Cryst Growth Des.
2012;12(10):4963–71.
11. Karki S, Friščić T, Fábián L, Jones W. New solid forms
of artemisinin obtained through cocrystallisation.
CrystEngComm. 2010;12(12):4038.
12. Qiao N, Li M, Schlindwein W, Malek N, Davies A,
Trappitt G. Pharmaceutical cocrystals: An overview.
Int J Pharm. 2011;419(1–2):1–11.
Jurnal Ilmu Kefarmasian Vol 18, 2020 Indonesia 183
13. Cerreia Vioglio P, Chierotti MR, Gobetto R.
Pharmaceutical aspects of salt and cocrystal forms of
APIs and characterization challenges. Adv Drug Deliv
Rev. 2017;117:86–110.
14. Hasa D, Jones W. Screening for new pharmaceutical
solid forms using mechanochemistry: A practical guide.
Adv Drug Deliv Rev. 2017;117:147–61.
15. Shan N, Toda F, Jones W. Mechanochemistry and cocrystal
formation: eff ect of solvent on reaction kinetics.
Chem Commun (Camb). 2002;(20):2372–3.
16. Trask A V, Motherwell WDS, Jones W. Solvent-drop
grinding: green polymorph control of cocrystallisation.
Chem Commun (Camb). 2004;(7):890–1.
17. Braga D, Grepioni F. Making crystals from crystals: a
green route to crystal engineering and polymorphism.
Chem Commun (Camb). 2005;(29):3635–45.
18. Alkhamis K a, Obaidat A a, Nuseirat AF. Solid-state
characterization of fl uconazole. Pharm Dev Technol.
2002;7(4):491–503.
19. Robertson JM, Ubbelohde a. R. A new form of
resorcinol. I. Structure Determination by X-Rays. Proc
R Soc A Math Phys Eng Sci. 1938;167(928):122–35.
20. Sanphui P, Goud R, Nangia A BU. Fast dissolving
curcumin co-crystals. 2011;99–130.
21. Sharma SM, Vijayakumar V, Sikka SK, Chidambaram
R. High pressure phase transitions in organic solids
l :α→β transition in resorcinol. 1985;25(1):75–9.
22. Panini P, Chattopadhyay B, Werzer O, Geerts Y. Crystal
growth alignment of β-polymorph of resorcinol in
thermal gradient. Cryst Growth Des. 2018;18(5):2681–
9.
23. Hacioǧlu F, Önal A. Determination of eprosartan
mesylate and hydrochlorothiazide in tablets by
derivative spectrophotometric and high-performance
liquid chromatographic methods. J Chromatogr Sci.
2012;50(8):688–93.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.