Revealing The Potential of Kluwak (Pangium Edule Reinw) as Natural Antioxidants and Senescence Inhibitors

  • Ratih Kurnia Wardani Gadjah Mada Univesity
  • Yurananda Magnalia Putri Gadjah Mada University
  • Dhella Angelina Nurjanah Gadjah Mada University
  • Ratna Asmah Susidarti Gadjah Mada University

Abstract

Senescence is a condition that causes tissue dysfunction, causing problems such as premature senescence. Premature senescence is caused by oxidative stress that comes from reactions in the body and the environment (UV rays, X rays, and free radicals). Kluwak seeds (Pangium edule Reinw) contain a variety of powerful antioxidant compounds such as vitamin E, vitamin C, polyphenols, flavonoids (quercetin and catechins), quinine, and β carotene. This narrative review aims to uncover kluwak’s potential as a natural senescence-inhibiting agent for antioxidants. The literature search method with the Booelan technique is used by combining several keywords with the notation AND, OR, NOT from various literatures from national and international journals published from various databases. The results showed that the compounds in kluwak can prevent oxidative stress that causes senescence because they have antioxidant activity from phenolic groups and conjugated double bonds. The mechanisms possessed by kluwak seeds are: stabilizing ROS, increasing antioxidant enzymes in the body, inhibiting prooxidant enzymes, preventing lipid peroxidation, and inhibit markers of senescence (anti-SASP). Therefore, kluwak is used as an anti-senescence agent in the form of cosmetic preparations that have local effects, such as hydrogels which are easy and safe to use in the body.

References

1. Senanayake SN. Green tea extract: Chemistry, antioxidant properties and food applications–A review. Journal of Functional Foods. 2013. 1;5(4):1529-41.

2. Sibuea P. Antioksidan senyawa ajaib penangkal penuaan dini. Sinar Harapan, Yogyakarta. 2003.

3. Mangunwardoyo W, Cahyaningsih E, Usia T. Uji aktivitas antimikroba ekstrak herba meniran (Phyllantus niruri Linn). Jurnal Obat Bahan Alam. 2008. 7(1).

4. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease. 2010. 28;5:99-118.

5. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, dkk. Oxidative stress, aging, and diseases. Clin Interv Aging. 26 April 2018;13:757–72.

6. Kasim A, David W. Characteristic of Pangium edule reinw as food preservative from different geographical sites. Asia Pac J Sustain Agric Food Energy. 1 November 2013;1(1):6–9.

7. Durani, LW, Jaafar, F, Tan, JK, Tajul Arifin, K, Mohd Yusof, YA, Wan Ngah, WZ, & Makpol, S 2015, Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts, Clin Ter, 166(6), e365-373.

8. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. April 2011;10(2):128–34

9. Chye FY, Sim KY. Antioxidative and antibacterial activities of Pangium edule seed extracts. International Journal of Pharmacology. 2009. 1;5(5):285-97.

10. Andarwulan N, Fardiaz D, Wattimena GA, Shetty K. Antioxidant activity associated with lipid and phenolic mobilization during seed germination of Pangium edule Reinw. Journal of agricultural and food chemistry. 1999 Aug 16;47(8):3158-63.

11. Makpol S, Durani LW, Chua KH, Mohd Yusof YA, Wan Ngah WZ. Tocotrienol-rich fraction prevents cell cycle arrest and elongates telomere length in senescent human diploid fibroblasts. Journal of Biomedicine and Biotechnology. 2011. 2011.

12. Suyanto P. The antioxidant activity of the extract of Pangium edule Reinw.(Keluak) seed in cooked ground turkey.

13. Lim TK. Pangium edule. InEdible medicinal and non-medicinal plants 2013 (pp. 780-784). Springer, Dordrecht.

14. Gallardo-Escamilla FJ, Kelly AL, Delahunty CM. Sensory characteristics and related volatile flavor compound profiles of different types of whey. Journal of Dairy Science. 2005. 1;88(8):2689-99.

15. Anonim. Kluwak. Keanekaragaman Hayati Daerah Istimewa Yogyakarta. 2017. Diambil dari: URL:http://kehati.jogjaprov.go.id/detailpost/kluwak.

16. Sibuea FS. Ekstraksi tanin dari kluwak (Pangium edule R.) menggunakaan pelarut etanol dan aquades dan aplikasinya sebagai pewarna makanan [Doctoral dissertation]. Semarang: Universitas Negeri Semarang; 2015.

17. Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. Anti-senescence compounds: a potential nutraceutical approach to healthy senescence. Ageing Research Reviews. 2018. 1;46:14-31.

18. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. The Journal of nutrition. 2003. 1;133(10):3275S-84S

19. Antimicrobial activity of kluwek (Pangium edule) seed extract as natural preservatives of tuna fish ball | Jurnal Pengolahan Hasil Perikanan Indonesia. 31 Januari 2018 [dikutip 30 Oktober 2021]; Tersedia pada: https://jurnal.ipb.ac.id/index.php/jphpi/article/view/19815.

20. Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008. 30(2):87–95.

21. Goldsmith TC. Arguments against non-programmed senescence theories. Biochemistry (Moscow). 2013 Sep;78(9):971-8.

22. Sachs DL, Voorhees JJ. Age‐Reversing Drugs and Devices in Dermatology. Clinical Pharmacology & Therapeutics. 2011 Jan;89(1):34-43.

23. Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung J, Wang Z, Datta SC, Fisher GJ, Voorhees JJ. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin1. Journal of Investigative Dermatology. 2000. 1;114(3):480-6.

24. Sparavigna A. Role of the extracellular matrix in skin senescence and dedicated treatment-State of the art. Plastic and Aesthetic Research. 2020. 20;7.

25. Botterweck AA, Verhagen H, Goldbohm RA, Kleinjans J, Van den Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and Chemical Toxicology. 2000. 1;38(7):599-605.

26. Cătană CS, Atanasov AG, Berindan-Neagoe I. Natural products with anti-senescence potential: Affected targets and molecular mechanisms. Biotechnology advances. 2018. 1;36(6):1649-56.

27. Mangunwardoyo W, Ismaini L, Heruwati ES. Analisis senyawa bio aktif dari ekstrak bui picung (Pangium edule Reinw.) Segar. Berita Biologi. 2008. 9(3):259-64.

28. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology. 2000. 25;56(1):3-12.

29. Manuhutu E. Efektivitas biji kluwek (Pangium edule Reinw) sebagai bahan pengawet al. ami terhadap beberapa sifat mutu dan masa simpan ikan cakalang (Katsuwonus pelamis [Doctoral dissertation, tesis]. Manado (ID): Universitas Sam Ratulangi). 2011.

30. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in senescence and age-related diseases. Oxidative Medicine and Cellular Longevity. 2016.

31. Badmus JA, Adedosu TO, Fatoki JO, Adegbite VA, Adaramoye OA, Odunola OA. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica. Acta Pol Pharm. 2011. 1;68(1):23-9.

32. Lee J, Koo N, Min DB. Reactive oxygen species, senescence, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety. 2004. 3(1):21-33.

33. Lim H, Park H, Kim HP. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochemical Pharmacology. 2015. 15;96(4):337-48.

34. Husain SR, Cillard J, Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry. 1987. 1;26(9):2489-91.

35. Domaszewska-Szostek A, Puzianowska-Kuźnicka M, Kuryłowicz A. Flavonoids in skin senescence prevention and treatment. International Journal of Molecular Sciences. 2021. 22(13):6814.

36. Makpol S, Abdul Rahim N, Kien Hui C, Wan Ngah WZ. Inhibition of mitochondrial cytochrome c release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay senescence in stress-induced premature senescence of skin fibroblasts. Oxidative Medicine and Cellular Longevity. 2012. 22;2012.

37. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. Journal of Biological Chemistry. 2003. 20;278(25):22546-54.

38. Valent S, Tóth M. Activation energy determinations suggest that thiols reverse autooxidation of tetrahydrobiopterin by a different mechanism than ascorbate. The International Journal of Biochemistry & Cell Biology. 2006. 1;38(10):1786-93.

39. Yu W, Jia L, Park SK, Li J, Gopalan A, Simmons‐Menchaca M, Sanders BG, Kline K. Anticancer actions of natural and synthetic vitamin E forms: RRR‐α‐tocopherol blocks the anticancer actions of γ‐tocopherol. Molecular Nutrition & Food Research. 2009. 53(12):1573-81.

40. Pierpaoli E, Viola V, Barucca A, Orlando F, Galli F, Provinciali M. Effect of annatto-tocotrienols supplementation on the development of mammary tumors in HER-2/neu transgenic mice. Carcinogenesis. 2013. 1;34(6):1352-60.

41. Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. nutrition & metabolism. 2014. 11(1):1-22.

42. Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances. 2015. 5(35):27986-8006.

43. Stahl W, Sies H. Antioxidant activity of carotenoids. Molecular Aspects of Medicine. 2003. 1;24(6):345-51.

44. Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox biology. 2014. 1;2:187-95.

45. Departemen Kesehatan Republik Indonesia. Farmakope Indonesia, Edisi VI. 606. Departemen Kesehatan Republik Indonesia. 1995.

46. Nutrition C for FS and A. Fragrances in cosmetics. FDA [Internet]. 8 September 2020 [dikutip 20 Juli 2021]; diambil dari: URL: https://www.fda.gov/cosmetics/cosmeticingredients/fragrances-cosmetics.

47. Rafighi Z, A Shiva, S Arab, & RM Yusuf. Association of dietary vitamin C and intake antioxidant enzymes in type 2 diabetes mellitus patients. Global J. Health Sci. 2013. 5(3):183-187.

48. Valko M, D Leibfritz, J Moncol, MTD Cronin, M Mazur, & J Telser. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007. 39:44–84.

49. Fardiaz, D.; Romlah, S. Antioxidant activity of picung (Pangium edule Reinw.) seed. In Development of Food Science and Technology in ASEAN; Proceedings of the 4th ASEAN Food Conference, 17-21, 1992; ASEAN: Jakarta, Indonesia, 1992.

50. Nurhakim, AS, Evaluasi pengaruh gelling agent terhadap stabilitas fisik dan profil difusi sediaan gel minyak biji jinten hitam (Nigella sativa Linn) [Skripsi]. Jakarta: UIN Syarif Hidayatullah. 2010.
Published
2021-10-31
How to Cite
WARDANI, Ratih Kurnia et al. Revealing The Potential of Kluwak (Pangium Edule Reinw) as Natural Antioxidants and Senescence Inhibitors. JURNAL ILMU KEFARMASIAN INDONESIA, [S.l.], v. 19, n. 2, p. 189-196, oct. 2021. ISSN 2614-6495. Available at: <http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/958>. Date accessed: 22 july 2024. doi: https://doi.org/10.35814/jifi.v19i2.958.
Section
Articles